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1. Introduction

The importance of the annual seasonality component of the current account of the balance of

payments of the Russian Federation has been expressed by Elvira Nabiulina, Governor of the

Bank of Russia in the recent press event statement of the Bank of Russia (2017). Seasonal

variations in the current account influence the Russian rouble (RUB) exchange rate movements

on the foreign exchange market. In this paper, the practical use of a new score-driven state-space

model for the Russian rouble is suggested, and robust measurements of the annual seasonality

components of the RUB to US dollar (USD) and RUB to Euro (EUR) currency exchange rates

for the period of 1999 to 2020 are analysed. The motivation for developing the econometric

method is that robust estimates of the seasonality component of Russian rouble exchange rates

are not reported in the body of academic literature, to the best of our knowledge. The robust

score-driven stochastic seasonality method of this paper can be used in practice, for example, to

deseasonalize the Russian rouble exchange rates for economic analyses, or to study the dynamic

amplitude of seasonality of the Russian rouble exchange rates for financing, investment and

policy decisions.

Score-driven state-space models are introduced in the works of Creal et al. (2013) and

Harvey (2013). The latent dynamic parameters (i.e. filters) of those models are updated by the

conditional score of the log conditional density of the dependent variables (hereinafter, score

function). Score-driven models implement an optimal filtering mechanism, according to the

Kullback–Leibler divergence with respect to the true data generating process. In the work of

Blasques et al. (2015), it is shown that a score-driven update of the time series model reduces

the Kullback–Leibler divergence in expectation and at every step, and they also show that only

score-driven updates can have this property. An alternative to the score-driven model of this

paper is the frequently used multiplicative seasonal ARIMA (autoregressive integrated moving

average) model (e.g. Brockwell and Davis 1996), for which filter-updating is not optimal with

respect to the Kullback–Leibler divergence. By using the results of Blasques et al. (2015),

the benefits of statistical inference of score-driven state-space models are incorporated into the
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literature on the Russian rouble.

In Section 2, the score-driven state-space model is presented, which includes: (i) a score-

driven I(1) stochastic local level filter that is able to capture structural changes in currency

exchange rate levels; (ii) a score-driven annual stochastic seasonality filter that measures time-

varying amplitude of currency exchange rates; (iii) a score-driven EGARCH filter that identifies

structural changes in the volatility of currency exchange rates. An advantage of the use of

the score-driven state-space model is that it can be estimated in a robust way for structural

changes in the Russian rouble exchange rates for the period of 1999 to 2020, which are due to

the different exchange rate policies of the Bank of Russia for the sample period.

In Section 3, the statistical inference of the score-driven state-space model is presented, and

conditions of asymptotic properties of the maximum likelihood (ML) estimator are reported. The

true data generating process is approximated by using the next alternatives: the Student’s t-

distribution, skewed generalized t-distribution (Skew-Gen-t) (McDonald and Michelfelder 2017),

exponential generalized beta distribution of the second kind (EGB2) (Prentice 1975), normal-

inverse Gaussian (NIG) distribution (Barndorff-Nielsen and Halgreen 1977), and the Meixner

(MXN) distribution (Schoutens 2002). These distributions are flexible due to the shape pa-

rameters, which may control tail-thickness, peakedness and asymmetry. The use of the MXN

distribution for score-driven seasonality is new in the literature. In Section 3, the score functions

that update the filters of the score-driven state-space model and their asymptotic properties are

presented. Moreover, in Section 3, the one-step ahead forecasting formulae of (i) the currency

exchange rates, and (ii) the volatilities of the currency exchange rates are also presented.

In Section 4, the dataset is described and the empirical results are presented. The similar

results for alternative probability distributions show that the statistical inference procedures

are robust for the Russian rouble. The ex-post estimates of the ML conditions do not indicate

failures for the asymptotic properties of ML. The parameter estimates support the specifications

of the filters in all score-driven state-space specifications. In Section 4, it is presented that the

score-driven state-space model identifies the structural changes in the RUB to USD and RUB to
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EUR exchange rates. The structural changes are in relation to different exchange rate regimes

of the Bank of Russia, which are reviewed for the pre-sample period of 1991 to 1998 and for

the sample period of 1999 to 2020. In Section 4, it is shown that the amplitude of the annual

stochastic seasonality component is significant, which is approximately in the range of ±2%

for the period of 1999 to 2020. The determinants of currency exchange rate seasonality are

presented by referring to the annual seasonality of (i) the exports of goods and services, imports

of goods and services, and the receivable and payable components of primary income from the

current account of the Russian Federation; (ii) crude oil production, natural gas export and

production, and coal exports, which are in relation to the most important export products of

the Russian Federation. The last section of this paper (Section 5) concludes.

2. Score-driven state-space model for currency exchange rates

The RUB to USD and RUB to EUR currency exchange rates, both denoted by pt, are decom-

posed into three time series components, by using the following model:

pt = µt + st + vt = µt + st + exp(λt)ǫt (1)

for t = 1, . . . , T weekly observations in the sample, and vt is defined by the second equality.

Firstly, the local level µt uses the following I(1) specification (Harvey 2013):

µt = µt−1 + κuµ,t−1 (2)

where uµ,t is the score function with respect to µt, which is defined according to the probability

distribution of the error term ǫt, and its properties are presented in Section 3. Filter µt is

initialized by using the first observation p1. The local level component µt provides a flexible

time series model, and it is robust to structural changes in the currency exchange rate time

series due to the currency exchange policies of Bank of Russia (2013).
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Secondly, the annual stochastic seasonality component st is given by:

st = D′

tρt (3)

where Dt is a 12×1 vector of dummy variables D
′

t = (DJan,t, . . . , DDec,t). For example, DJan,t = 1

if week t is in January, zero otherwise. Moreover, ρt is a 12×1 vector of time-varying parameters,

which allows a stochastic amplitude of seasonality, and is updated as follows:

ρt = ρt−1 + γtuµ,t−1 (4)

The same score function updates both µt and st, as in the works of Harvey (2013), Harvey and

Luati (2014), Blazsek and Hernandez (2018), Ayala and Blazsek (2019a, 2019b), and Blazsek

and Licht (2020). Filter ρt includes the time-varying 12 × 1 parameter vector γt, for which

each element is γj,t = γj if Dj,t = 1, otherwise γj,t = −γj/(12 − 1). This parametrization

ensures that
∑Dec

j=Jan γj,t = 0. Therefore, st is centred at zero. For this parametrization of γt,

parameters γj for j ∈ {Jan, . . . ,Dec} are jointly estimated with the rest of the parameters.

Filter ρt is initialized by using a non-linear regression model, for which the dependent variable

pt is regressed on a constant, a deterministic linear time trend, and twelve dummies that indicate

the months of the year. This regression model is estimated by using the non-linear least squares

(NLS) method, because the sum of the parameters of the dummy variables is restricted to zero.

The NLS estimation is performed by using data for the first year of the full sample period.

This initialization procedure is suggested in the works of Harvey (2013) and Harvey and Luati

(2014). The stochastic annual seasonality component st is significant, because of the seasonal

exports, imports and primary income of Russia (e.g. Mironov 2015; Bozhechkova et al. 2017),

and because of the seasonal interventions of the Bank of Russia on the currency exchange rate

market (Bank of Russia 2013).

Thirdly, the conditional volatility of the error term vt is updated by using the following
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score-driven EGARCH model (Harvey and Chakravarty 2008; Harvey 2013):

λt = ω + βλt−1 + αuλ,t−1 (5)

where uλ,t is the score function with respect to λt, which is defined according to the probability

distribution of the error term ǫt, and its properties are defined in Section 3. Filter λt is initialized

by using parameter λ0. In the relevant literature, there are works which suggest the use of

dynamic volatility models for Russian rouble exchange rate volatility (e.g. Kutu and Ngalawa

2016; Borotshkyn 2017; Zerihun et al. 2020). In the present paper, score-driven alternatives are

used, which involve optimal updating mechanisms according to the Kullback–Leiber divergence

(Blasques et al. 2015). By using a dynamic volatility model for pt, the dispersion of the currency

exchange rate around its location is robust to different currency exchange regimes of the Bank

of Russia (Bank of Russia 2013).

As alternatives to the score-driven state-space specification of this section, the following mod-

els are also estimated: (i) two-component µt specification for local level (Harvey 2013); (ii) two-

component λt specification for EGARCH (Harvey 2013; Harvey and Lange 2018); (iii) EGARCH

with leverage effects (Harvey and Chakravarty 2008; Harvey 2013); (iv) annual stochastic sea-

sonality for λt, in addition to the annual stochastic seasonality for the location component st

(Harvey 2013; Ayala and Blazsek 2019a). The statistical performances of those alternatives are

inferior to the statistical performance of the score-driven state-space model of this section.

3. Statistical inference

Score-driven models are estimated by using the ML method (e.g. Harvey 2013). The likelihood

function is maximized numerically, and the ML estimates of parameters are given by:

Θ̂ML = argmax
Θ

T
∑

t=1

ln f(pt|p1, . . . , pt−1) (6)

where Θ is the vector of parameters in the conditional density function f(pt|p1, . . . , pt−1), for
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which the standard errors of parameters are estimated by using the Huber–White robust sand-

wich estimator (e.g. Davidson and MacKinnon 2004).

For the consistency and asymptotic normality of the ML estimates of parameters, it is re-

quired that C1 = |β| < 1 and C2 = β2 + 2βαE(∂uλ,t/∂λt) + α2E[(∂uλ,t/∂λt)
2] < 1 (Harvey

2013). C1 < 1 indicates that filter λt is covariance stationarity. C2 < 1 indicates that those ele-

ments of the information matrix that correspond to the parameters of λt are finite. In addition,

for the invertibility of filter λt, the following condition is required: C3 = E {ln |∂λt/∂λt−1|} =

E {ln |β + α∂uλ,t/∂λt|} < 0 (Blasques et al. 2018). The sample estimates of C1, C2 and C3

are analysed to study possible failures of ML, for which the partial derivatives are estimated

numerically and the expectations are estimated by using sample averages. For the parameters

of the local level component µt, the asymptotic properties of ML hold because the parameter of

µt−1 is set to one, and it is also required that κ 6= 0 (Harvey 2013). For the parameters of the

stochastic seasonality component st, the asymptotic properties of ML hold, since the parameter

of ρt−1 is set to one, and it is also required that at least one of the seasonality parameters γj

for j ∈ {Jan, . . . ,Dec} is not zero. Components µt and st are effectively separated, because

E(st) = 0 due to the parametrization of st.

The score functions, which update filters µt, ρt and λt, are defined according to the condi-

tional density function of the ML estimator. Score function uµ,t is the scaled partial derivative

of the log conditional density of pt with respect to µt (Harvey 2013). The use of the same

score function in filters µt and st is motivated by the fact that the conditional scores with

respect to µt and st are identical. Score function uλ,t is the partial derivative of the log condi-

tional density of pt with respect to λt (Harvey 2013). By using the results of Harvey (2013),

E(uµ,t) = E(uµ,t|y1, . . . , yt−1) = E(uµ,t|uµ,1, . . . , uµ,t−1) = 0 and E(uλ,t) = E(uλ,t|y1, . . . , yt−1) =

E(uλ,t|uλ,1, . . . , uλ,t−1) = 0. Thus, both score functions are martingale difference sequences.

The conditional density of pt is determined by the probability distribution of ǫt, for which the

Student’s t, Skew-Gen-t, EGB2, NIG and MXN distributions are considered. These alternatives

provide robustness for the ML estimation results.
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In the reminder of this section, for each probability distribution, technical details are pre-

sented for (i) the log conditional density of pt, (ii) the score functions uµ,t and uλ,t, and (iii) the

one-step ahead forecasting formulae for pt and for the volatility of pt.

3.1. Student’s t-distribution

For the Student’s t-distribution ǫt ∼ t[0, 1, exp(ν) + 2], where ν ∈ IR is a shape parameter. The

parameter specification [exp(ν) + 2] ensures that the first two moments of pt exist.

(i) The log conditional density of pt is

ln f(pt|p1, . . . , pt−1) = ln Γ

[

exp(ν) + 3

2

]

− ln Γ

[

exp(ν) + 2

2

]

(7)

−
ln(π) + ln[exp(ν) + 2]

2
− λt −

exp(ν) + 3

2
ln

{

1 +
ǫ2t

exp(ν) + 2

}

where Γ(·) is the gamma function.

(ii) The score function with respect to µt is given by (Harvey 2013):

∂ ln f(pt|p1, . . . , pt−1)

∂µt

=
[exp(ν) + 2] exp(λt)ǫt

ǫ2t + exp(ν) + 2
×

exp(ν) + 3

[exp(ν) + 2] exp(2λt)
= (8)

= uµ,t ×
exp(ν) + 3

[exp(ν) + 2] exp(2λt)

where the scaled score function uµ,t is defined according to the last equality. The uµ,t term trims

outliers, because uµ,t →p 0 when |ǫt| → ∞ (Figures 1(a) and 2(a)). The discounting that is

undertaken by uµ,t is identical for the positive and negative sides of the distribution. The score

function with respect to λt is given by (Harvey and Chakravarty 2008; Harvey 2013):

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt

=
[exp(ν) + 3]ǫ2t
exp(ν) + 2 + ǫ2t

− 1 (9)

The updating term uλ,t Winsorizes extreme observations, because uλ,t →p c (c > 0 is a real

number) when |ǫt| → ∞ (Figures 1(b) and 2(b)). The discounting that is undertaken by uλ,t is
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identical for the positive and negative sides of the probability distribution.

(iii) The conditional mean and conditional standard deviation of pt, respectively, are:

E(pt|p1, . . . , pt−1) = µt + st (10)

σt = σ(pt|p1, . . . , pt−1) = exp(λt)

[

exp(ν) + 2

exp(ν)

]1/2

(11)

3.2. Skewed generalized t-distribution (Skew-Gen-t distribution)

For the Skew-Gen-t distribution ǫt ∼ Skew-Gen-t[0, 1, tanh(τ), exp(ν)+2, exp(η)], where tanh(·)

is the hyperbolic tangent function, and τ ∈ IR, ν ∈ IR and η ∈ IR are shape parameters. For

tanh(τ) = 0 and exp(η) = 2, the Skew-Gen-t distribution is the Student’s t-distribution. The

parameter specification [exp(ν) + 2] ensures that the first two moments of pt exist.

(i) The log-density of pt is (Ayala et al., 2019):

ln f(pt|p1, . . . , pt−1) = η − λt − ln(2)−
ln[exp(ν) + 2]

exp(η)
− ln Γ

[

exp(ν) + 2

exp(η)

]

(12)

− ln Γ[exp(−η)] + ln Γ

[

exp(ν) + 3

exp(η)

]

−
exp(ν) + 3

exp(η)
ln

{

1 +
|ǫt|

exp(η)

[1 + tanh(τ)sgn(ǫt)]exp(η) × [exp(ν) + 2]

}

where sgn(·) is the signum function.

(ii) The score function with respect to µt is given by (Ayala et al., 2019):

∂ ln f(pt|p1, . . . , pt−1)

∂µt

= (13)

=
[exp(ν) + 2] exp(λt)ǫt|ǫt|

exp(η)−2

|ǫt|exp(η) + [1 + tanh(τ)sgn(ǫt)]exp(η)[exp(ν) + 2]
×

exp(ν) + 3

[exp(ν) + 2] exp(2λt)
=
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= uµ,t ×
exp(ν) + 3

[exp(ν) + 2] exp(2λt)

where the scaled score function uµ,t is defined according to the second equality. The uµ,t term

trims extreme observations, because uµ,t →p 0 when |ǫt| → ∞ (Figures 1(c) and 2(c)). The

discounting that is undertaken by uµ,t is not identical for the positive and negative sides of the

probability distribution. The score function with respect to λt is given by (Ayala et al., 2019):

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt

=
|ǫt|

exp(η)[exp(ν) + 3]

|ǫt|exp(η) + [1 + tanh(τ)sgn(ǫt)]exp(η)[exp(ν) + 2]
− 1 (14)

The updating term uλ,t Winsorizes outliers, because uλ,t →p c1 when ǫt → −∞ and uλ,t →p c2

when ǫt → +∞ (c1 > 0 and c2 > 0 are real numbers) (Figures 1(d) and 2(d)). The Winsorizing

that is undertaken by uλ,t is not identical for the positive and negative sides of the distribution.

(iii) The conditional mean and conditional standard deviation of pt, respectively, are (Ayala

et al., 2019):

E(pt|p1, . . . , pt−1) = µt+ st+2 exp(λt)tanh(τ)[exp(ν)+ 2]exp(−η) ×
B
{

2
exp(η)

, exp(ν)+1
exp(η)

}

B
{

1
exp(η)

, exp(ν)+2
exp(η)

} (15)

σt = σ(pt|p1, . . . , pt−1) = exp(λt)[exp(ν) + 2]exp(−η)× (16)

×







[3tanh2(τ) + 1]B
[

3
exp(η)

, exp(ν)
exp(η)

]

B
[

1
exp(η)

, exp(ν)+2
exp(η)

] −
4tanh2(τ)B2

[

2
exp(η)

, exp(ν)+1
exp(η)

]

B2
[

1
exp(η)

, exp(ν)+2
exp(η)

]







1/2

where B(·, ·) is the beta function.

3.3. Exponential generalized beta distribution of the second kind (EGB2 distribution)

For the EGB2 distribution ǫt ∼ EGB2[0, 1, exp(ν), exp(η)], where ν ∈ IR and η ∈ IR are shape

parameters. For the EGB2 distribution all moments exist.
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(i) The log conditional density is (Caivano and Harvey 2014):

ln f(pt|p1, . . . , pt−1) = exp(ν)ǫt − λt − ln Γ[exp(ν)] (17)

− ln Γ[exp(η)] + ln Γ[exp(ν) + exp(η)]− [exp(ν) + exp(η)] ln [1 + exp(ǫt)]

(ii) The score function with respect to µt is given by (Caivano and Harvey 2014):

∂ ln f(pt|p1, . . . , pt−1)

∂µt

= exp(λt)[exp(ν) + exp(η)]
exp(ǫt)

exp(ǫt) + 1
− exp(λt) exp(ν) (18)

uµ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂µt

× {Ψ(1)[exp(ν)] + Ψ(1)[exp(η)]} exp(2λt) (19)

The updating term uµ,t Winsorizes outliers, because uµ,t →p c1 when ǫt → −∞ and uµ,t →p c2

when ǫt → +∞ (c1 > 0 and c2 > 0 are real numbers) (Figures 1(e) and 2(e)). The Winsorizing

that is undertaken by uµ,t is not identical for the positive and negative sides of the probability

distribution. The score function with respect to λt is given by (Caivano and Harvey 2014):

∂ ln f(pt|p1, . . . , pt−1)

∂λt

= uλ,t = [exp(ν) + exp(η)]
ǫt exp(ǫt)

exp(ǫt) + 1
− exp(ν)ǫt − 1 (20)

The updating term uλ,t performs a linearly increasing and asymmetric transformation of ǫt, as

|ǫt| → ∞ (Figures 1(f) and 2(f)).

(iii) The conditional mean and conditional standard deviation of pt, respectively, are (Caivano

and Harvey 2014):

E(pt|p1, . . . , pt−1) = µt + st + exp(λt)
{

Ψ(0)[exp(ν)]−Ψ(0)[exp(η)]
}

(21)
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σt = σ(pt|p1, . . . , pt−1) = exp(λt)
{

Ψ(1)[exp(ν)] + Ψ(1)[exp(η)]
}1/2

(22)

3.4. Normal-inverse Gaussian (NIG) distribution

For the NIG distribution ǫt ∼ NIG[0, 1, exp(ν), exp(ν)tanh(η)], where ν ∈ IR and η ∈ IR are

shape parameters. For the NIG distribution all moments exist.

(i) The log conditional density is (Blazsek et al. 2018):

ln f(pt|p1, . . . , pt−1) = ν − λt − ln(π) + exp(ν)[1− tanh2(η)]1/2 (23)

+ exp(ν)tanh(η)ǫt + lnK(1)







exp(ν)

√

1 +

[

yt − µt

exp(λt)

]2







−
1

2
ln
{

1 + ǫ2t
}

where K(j)(·) is the modified Bessel function of the second kind of order j.

(ii) The score function with respect to µt is given by (Blazsek et al. 2018):

∂ ln f(pt|p1, . . . , pt−1)

∂µt

= − exp(ν − λt)tanh(η) +
ǫt

exp(λt)(1 + ǫ2t )
(24)

+
exp(ν − λt)ǫt

√

1 + ǫ2t
×

K(0)
[

exp(ν)
√

1 + ǫ2t

]

+K(2)
[

exp(ν)
√

1 + ǫ2t

]

2K(1)
[

exp(ν)
√

1 + ǫ2t

]

uµ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂µt

× exp(2λt) (25)

The updating term uµ,t Winsorizes outliers, because uµ,t →p c1 when ǫt → −∞ and uµ,t →p c2

when ǫt → +∞ (c1 > 0 and c2 > 0 are real numbers) (Figures 1(g) and 2(g)). The Winsorizing

that is undertaken by uµ,t is not identical for the positive and negative sides of the probability
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distribution. The score function with respect to λt is given by (Blazsek et al. 2018):

uλ,t = −1− exp(ν)tanh(η)ǫt +
ǫ2t

1 + ǫ2t
(26)

+
exp(ν)ǫ2t
√

1 + ǫ2t
×

K(0)
[

exp(ν)
√

1 + ǫ2t

]

+K(2)
[

exp(ν)
√

1 + ǫ2t

]

2K(1)
[

exp(ν)
√

1 + ǫ2t

]

The updating term uλ,t performs a linearly increasing and asymmetric transformation of ǫt, as

|ǫt| → ∞ (Figures 1(h) and 2(h)).

(iii) The conditional mean and conditional standard deviation of pt, respectively, are (Blazsek

et al. 2018):

E(pt|p1, . . . , pt−1) = µt + st +
exp(λt)tanh(η)

[1− tanh2(η)]1/2
(27)

σt = σ(pt|p1, . . . , pt−1) =

{

exp(2λt − ν)

[1− tanh2(η)]3/2

}1/2

(28)

3.5. Meixner (MXN) distribution

For the MXN distribution ǫt ∼ MXN[0, 1, πtanh(ν), exp(η)], where ν ∈ IR and η ∈ IR are shape

parameters. For the MXN distribution all moments exist.

(i) The log conditional density is (Schoutens 2002):

ln f(pt|p1, . . . , pt−1) = −λt + 2 exp(η) ln {2cos[πtanh(ν)/2]} − ln(2π) (29)

− ln Γ{2 exp(η)}+ πtanh(ν)ǫt + 2 ln |Γ [exp(η) + iǫt]|

where cos(·) is the cosine function, tanh(·) is the hyperbolic tangent function, Γ(·) is the gamma

function, and i is the imaginary unit. We define g(λt) = Γ[exp(η) + i(yt − µt) exp(−λt)], for
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which ∂ ln |g(λt)|/∂λt = Re[g′(λt)/g(λt)], where λt ∈ IR and Re(·) is the real part of a complex

number. Since Γ′(·) = Γ(·)Ψ(0)(·), where Ψ(j)(·) is the polygamma function of order j.

(ii) The score function with respect to µt is given by:

∂ ln f(pt|p1, . . . , pt−1)

∂µt

= −
πtanh(ν)

exp(λt)
+ 2Re

{

−
i

exp(λt)
Ψ(0)[exp(η) + iǫt]

}

(30)

uµ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂µt

× exp(2λt) (31)

The updating term uµ,t Winsorizes outliers, because uµ,t →p c1 when ǫt → −∞ and uµ,t →p c2

when ǫt → +∞ (c1 > 0 and c2 > 0) (Figures 1(i) and 2(i)). The Winsorizing of uµ,t is not

identical for the positive and negative sides of the probability distribution. The use of the MXN

distribution for uµ,t in score-driven models of seasonality is new in the literature.

The score function with respect to λt is given by:

∂ ln f(pt|p1, . . . , pt−1)

∂λt

= uλ,t = 2Re
{

−iǫtΨ
(0)[exp(η) + iǫt]

}

− πtanh(ν)ǫt − 1 (32)

The use of uλ,t for the MXN distribution is from the work of Blazsek and Haddad (2020).

The updating term uλ,t performs a linearly increasing and asymmetric transformation of ǫt, as

|ǫt| → ∞ (Figures 1(j) and 2(j)).

(iii) The conditional mean and conditional standard deviation of pt, respectively, are:

E(pt|p1, . . . , pt−1) = µt + st + exp(λt + η)tan[πtanh(ν)/2] (33)

σt = σ(pt|p1, . . . , pt−1) =

{

exp(λt + η)

cos[πtanh(ν)] + 1

}1/2

(34)
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It is noteworthy that the conditional mean of vt is not zero for the Skew-Gen-t, EGB2, NIG

and MXN distributions, which is indicated by the one-step ahead forecasting formulae for pt

(i.e. by the term in addition to µt+st). The non-zero expected value of vt is not problematic for

the statistical inference of the score-driven state-space models. The one-step ahead forecasting

formulae of this paper may be used in future works on the Russian rouble exchange rates, in

which the predictive accuracies of alternative score-driven and classical time series models are

compared for the period of the fully floating exchange rate regime from 2015.

[APPROXIMATE LOCATION OF FIGURES 1 AND 2]

4. Empirical results

4.1. Data

RUB to USD and RUB to EUR weekly currency exchange rate data are used for the period of

4 January 1999 to 27 January 2020. In Table 1(a), data sources, observation periods, sample

sizes, and several descriptive statistics are reported for the currency exchange rate levels pt and

percentage changes (pt − pt−1)/pt−1. The augmented Dickey–Fuller tests (Dickey and Fuller

1979) results and the estimates of the degree of integration (Geweke and Porter-Hudak 1983;

Robinson 1995) indicate that pt is integrated of order one, which supports the I(1) stochastic

local level specification for µt. The ARCH test (Engle 1982) indicates heteroscedasticity for all

time series, which supports the use of the EGARCH model for vt. For the Shapiro–Wilk test

(Shapiro and Wilk 1965), the normal distribution null hypothesis is always rejected. In Figure 3,

the evolution of the currency exchange rates is presented.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 3]

4.2. Multiplicative seasonal ARIMA

In Table 1(b), the estimates for the multiplicative seasonal ARIMA model for the Russian rouble

exchange rates are presented. For the multiplicative seasonal ARIMA model, estimates for the

following lag-orders are presented: (1, d, 1)(1, 0, 1)12 for d = 0 and d = 1. Thus, the model is

specified as: (1 − φL)(1 − ΦL12)(1 − L)dpt = c + (1 + θL)(1 + ΘL12)vt, where φ and θ are the

level parameters, Φ and Θ are the seasonality parameters, and L is the lag operator.
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The results on seasonality are robust to alternative AR and MA lag-orders. For d = 0 unit

root is found for pt ( Table 1), which motivates d = 1. According to the estimates, the season-

ality parameters are not significantly different from zero (Table 1). The specification for d = 0

with φ = 1 is also estimated, and robust results on seasonality are obtained (the corresponding

results are not reported in Table 1). The results for ARIMA are in contrast to the estimation

results for score-driven models of the following section, for which seasonality effects are signif-

icantly different from zero. Furthermore, the log-likelihood (LL), Akaike information criterion

(AIC), Bayesian information criterion (BIC), and Hannan–Quinn criterion (HQC) metrics for

multiplicative seasonal ARIMA are also reported in Table 1, and they are compared to the same

metrics for the score-driven state-space specifications in the following section.

4.3. Model diagnostics and parameter estimates for score-driven models

The parameter estimates and model diagnostics, for RUB to USD and RUB to EUR exchange

rates, are presented in Tables 2 and 3, respectively. The statistical performances of different

models are compared by using the LL, AIC, BIC and HQC metrics, which is motivated by

the work of Harvey (2013). The score-driven model with EGB2 probability distribution has

the best statistical performance for both Russian rouble exchange rates. Nevertheless, the ML

estimates of the seasonality components are very similar for all the probability distributions of

this paper (Appendix), which indicate robust results for the score-driven state-space models of

the Russian rouble exchange rates. The results also indicate that the likelihood-based statistical

performance of all score-driven state-space models is superior to the statistical performance of

the multiplicative seasonal ARIMA model. In addition, the sample estimates of the C1, C2 and

C3 metrics never indicate failures of the asymptotic properties of the ML estimates.

With respect to parameter significance, κ is significantly different from zero for all models,

which supports the score-driven stochastic local level specification for µt (Harvey 2013). For

all cases, α and β are significantly different from zero, which supports the use of the EGARCH

specification of heteroscedasticity. Some of the seasonality parameters (i.e. γJan, . . . , γDec) are

significant for all score-driven state-space specifications (Tables 2 and 3), which supports the
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use of the annual stochastic seasonality component for Russian rouble exchange rates.

[APPROXIMATE LOCATION OF TABLES 2 AND 3]

4.4. Structural changes

An advantage of the use of the score-driven state-space model is that it can be estimated in a

robust way for structural changes in the Russian rouble exchange rates, which is provided by the

I(1) local level filter, the stochastic seasonality filter, and the EGARCH-based volatility filter.

In Figures 4(a) and 5(a), the estimates of the error term vt are presented for RUB to USD

and RUB to EUR, respectively. Those figures indicate three regimes for the full sample period

with different levels of volatility: (i) January 1999 to January 2009, (ii) February 2009 to October

2014, and (iii) November 2014 to January 2020.

The volatility dynamics in Figures 4(a) and 5(a) motivate the use of EGARCH for the RUB

to USD and RUB to EUR currency exchange rates. Furthermore, in Figures 4(b) and 5(b), the

estimates of the standardized error term ǫt are presented for RUB to USD and RUB to EUR,

respectively. Those figures indicate that heteroscedasticity is effectively controlled by EGARCH,

since the standardized error term ǫt appears to be homoscedastic. The observations for which

relatively large variance is inferred from Figures 4(b) and 5(b) are the outliers, which are in the

standardized error term ǫt due to the outlier-robust updating mechanisms of the filters.

The different regimes for RUB to USD and RUB to EUR (Figures 4(a) and 5(a)) are in

relation to different currency exchange regimes that are implemented by the Bank of Russia. In

the following, the exchange rate policies of Russia for the period of 1991 to 2020 are reviewed.

4.4.1. Exchange rate policies for the pre-sample period of 1991 to 1998

When the Soviet Union dissolved in 1991, the Russian rouble exchange rate was determined

in a multiple exchange rate system (Baliño et al. 1997). In 1992, the Bank of Russia began

to intervene on the Moscow Interbank Currency Exchange (MICEX) with the objectives of

smoothing the volatility of the the Russian rouble nominal exchange rates and ensuring a steady

nominal depreciation of the Russian rouble. The multiple exchange rate system was unified in
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July 1992. Since July 1993, exporters may sell foreign currencies on the exchange rate market

through an authorized bank (Baliño et al. 1997).

In December 1994, as a part of new economic policies that aimed to achieve macroeconomic

stability, a 10% limit on daily Russian rouble currency exchange rate movements was established

(Baliño et al. 1997). In the second quarter of 1995, the Bank of Russia intervened by purchasing

foreign currencies, in order to prevent an appreciation of the Russian rouble due to foreign

capital inflows (Baliño et al. 1997). In July 1995, the Bank of Russia established a RUB to

USD exchange rate band, according to which RUB to USD was permitted to fluctuate freely

within a band, and the Bank of Russia intervened outside of the band (Baliño et al. 1997). In

July 1995, the Bank of Russia fixed the 4,600 RUB to USD exchange rate for the midpoint with

the ±6.5% band (Baliño et al. 1997). In July 1996, a sliding devaluation system was introduced,

in which a sliding band with a 1.5% monthly depreciation rate was established with an initial

minimum value of 5,000 RUB to USD and an initial maximum value of 5,600 RUB to USD

(Baliño et al. 1997). The sliding band was slightly narrowed over time (Baliño et al. 1997).

4.4.2. Exchange rate policies for the sample period of 1999 to 2020

(i) After the 1998 Russian financial crisis, the Bank of Russia abandoned the sliding deval-

uation system and implemented a managed floating currency exchange rate regime (Bank of

Russia 2013). For the period of 1999 to 2005, the Bank of Russia intervened only by performing

RUB to USD operations. In 2005, the Bank of Russia introduced a USD and EUR basket (i.e.

dual basket), as the operational indicator of its currency exchange rate policy (Bank of Russia

2020). Since 2005, the Bank of Russia intervened by performing operations in RUB to USD and

RUB to EUR. The operational borders of the currency exchange rate band are defined based

on balance of payments dynamics and currency exchange rate market developments (Bank of

Russia 2020). For example, in February 2007, the basket composition was established at 55%

for USD and 45% for EUR (Bank of Russia 2020).

(ii) During the 2008 US financial crisis, due to a substantial drop of oil prices and a strong

outflow of foreign capital from Russia, the Bank of Russia established a fixed band for the
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Russian rouble exchange rate between 26 and 41 RUB to USD in January 2009. Within those

limits a floating interval was established, initially with a width of 2 RUB to USD, which later

was increased (Bank of Russia 2009, 2020; Tabata 2011). Moreover, a procedure that regulates

the modification of that band was also established in January 2009 (Bank of Russia 2009, 2020;

Tabata 2011). In October 2010, the Bank of Russia abandoned the fixed band (Bank of Russia

2020). In December 2011, MICEX merged with the Russian Trading System (the Moscow stock

market, founded in 1995), and created the Moscow Exchange, the largest exchange group in

Russia. For the period of October 2010 to November 2014, the Bank of Russia implemented

a managed floating exchange rate regime, which smoothed the volatility of the exchange rates

without modifying its trends (Bank of Russia 2020). Smoothing of the volatility of the exchange

rates was performed by selling or buying USD or EUR inside and outside the band. On July

2012, a floating operational band was established with a width of 7 RUB to USD. In August

2014, this operational band was widened to 9 RUB to USD from 7 RUB to USD (Bank of Russia

2020).

(iii) In November 2014, the Bank of Russia abolished the use of the operational band for

exchange rate policies, and it only intervenes on the foreign exchange market on and outside

the operational band of the Russian rouble exchanges rates (Bank of Russia 2020).

[APPROXIMATE LOCATION OF FIGURES 4 AND 5]

4.5. Stochastic seasonality

For the score-driven state-space model of the EGB2 probability distribution, the seasonality

components of RUB to USD and RUB to EUR are presented in Figures 4(c) and 5(c), respec-

tively. Those estimates indicate a significant magnitude of annual seasonality in the currency

exchange rates. Very similar seasonality estimates are obtained for the rest of the probability

distributions (Appendix). Thus, the score-driven models for the Russian rouble exchange rates

of this paper provide robust results. In the following, the annual stochastic seasonality com-

ponents of the Russian rouble exchange rates are explained, by using macroeconomic variables

from the current account of balance of payments of the Russian Federation.
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Turuntseva et al. (2018) argue that, in order to forecast several economic indicators for the

Russian Federation, seasonality should be included. According to Elvira Nabiulina, Governor

of the Bank of Russia, seasonal fluctuations are typical of the current account in Russia (Bank

of Russia 2017). In relation to this, we also refer to the seasonal interventions of the Bank of

Russia on the foreign currency market (Bank of Russia 2013).

In Figure 6, the evolution of exports of goods and services from Russia, imports of goods

and services to Russia, and the primary income of Russia (receivable and payable components)

are presented (source: Bank of Russia). The figure indicates significant annual seasonality

components for those variables. Significant relationships between imports to Russia and the

Russian rouble exchange rates are reported, for example, in the works of Sosunov and Zamulin

(2006), Ivanova (2007), and Tyll et al. (2018). Gusev and Shirov (2009) use foreign trade

forecasting models that are developed by the Institute of Economic Forecasting of the Russian

Academy of Sciences (IEF RAS), as a basis to conduct a comparative analysis of changes in key

foreign trade indicators (e.g. changes in world oil prices) under various hypotheses. Seasonal

factors are included by these authors as an exogenous variable into the regression equations for

imports and exports, to account for seasonal fluctuations. Oil prices are considered in the export

equation, and the RUB to USD exchange rate is included in the import equation.

In the body of literature on crude oil production, several works emphasize the relationship

between the crude oil exports from Russia and the Russian rouble currency exchange rates (e.g.

Mironov 2015; Sosunov and Zamulin 2006; Alekhin 2016; Menash et al. 2017; Tyll et al. 2018).

Oil production in Russia has been steadily increasing since 1998 (source: US Energy Information

Administration). The volume of crude oil exports from Russia increased steadily for the period

of 2000 to 2004, and the same exports have been approximately constant, at the 250 million

tons per year level, for the period of 2004 to 2020.

In addition to crude oil exports, annual seasonality of the Russian rouble exchange rates is

also due to the refined petroleum, natural gas and coal exports. Crude oil, refined petroleum,

natural gas, and coal exports contribute to a significant portion of total exports from Rus-
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sia in every year. For example, the exports of those products were approximately 55.5% of

the total exports in 2017 (source: Observatory of Economic Complexity). In Table 4, an-

nual seasonality for crude oil production (ticker: RUSOTTDY Index), natural gas exports

(ticker: RUCUNGAS Index), natural gas production (ticker: RUSGTOMA Index), and coal

exports (ticker: RUCUCOLE Index) are presented (source of monthly data: Bloomberg). In

Table 4, the OLS-HAC (ordinary least squares, heteroscedasticity and autocorrelation con-

sistent) estimates (Newey and West 1978) for the following regression model are presented:

yt = c+δJanDJan,t+ . . .+δDecDDec,t+θ1t+θ2t
2+vt. The OLS-HAC estimates suggest significant

annual seasonality for the crude oil production, natural gas exports and production, and coal

exports. Therefore, seasonal variations in the current account balance (Bozhechkova and Trunin

2018) and in the Russian rouble exchange rates are expected.

[APPROXIMATE LOCATION OF TABLE 4 AND FIGURE 6]

5. Conclusions

In this paper, the practical use of a score-driven state-space model has been suggested, to

measure the annual seasonality components in a robust way for Russian rouble currency exchange

rates for the period of 1999 to 2020. The motivation of the use of the score-driven models is

that those models implement an optimal filtering mechanism, according to the Kullback–Leibler

divergence in favour of the true data generating process. The same is not true for the frequently

used multiplicative seasonal ARIMA model, for which the annual seasonality effects are not

significant for the Russian rouble exchange rates. The estimation of seasonality effects for

Russian rouble currency exchange rate data is motivated by the significant annual seasonality

of the current account in the balance of payments of the Russian Federation.

An advantage of the use of the score-driven state-space model is that it can be estimated in a

robust way for structural changes in the Russian rouble exchange rates. The structural changes

are in relation to different currency exchange regimes that have been implemented by the Bank

of Russia, and the exchange rate policies of Russia are reviewed for the pre-sample period of

1991 to 1998 and for the sample period of 1999 to 2020.

21



The statistical inference procedures have indicated that the score-driven state-space model

for the Russian rouble provides robust estimates of the annual stochastic seasonality components

of the Russian rouble exchange rates, which is approximately in the range of ±2% for the period

of 1999 to 2020. These findings motivate the practical use of the robust score-driven stochastic

seasonality method of this paper, in order to deseasonalize the Russian rouble exchange rates

for economic analyses, or to study the dynamic amplitude of seasonality of the Russian rouble

exchange rates for financing, investment and policy decisions.
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Table 1. Descriptive statistics.

(a) Descriptive statistics RUB/USD RUB/USD % RUB/EUR RUB/EUR %

Data source Bloomberg Bloomberg Investing.com Investing.com

Start date 4 January 1999 4 January 1999 4 January 1999 4 January 1999

End date 27 January 2020 27 January 2020 27 January 2020 27 January 2020

T 1, 100 1, 100 1, 100 1, 100

Minimum 22.4666 −0.1427 23.3660 −0.0893

Maximum 79.9695 0.1386 88.2196 0.1188

Average 37.5408 0.0010 44.5378 0.0010

Standard deviation 14.8219 0.0147 16.2848 0.0179

Skewness 1.1684 1.1747 0.8756 1.0604

Excess kurtosis −0.3191 22.0984 −0.5799 7.1783

ADF test (constant) p-value 0.7867 0.0000 0.8601 0.0000

ADF test (constant, trend) p-value 0.5430 0.0000 0.3650 0.0000

Degree of integration (local Whittle) 0.9945 −0.0409 0.9964 −0.1907

Degree of integration (GPH) 0.9939 −0.0499 1.0325 −0.1636

ARCH test p-value 0.0000 0.0000 0.0000 0.0000

Shapiro–Wilk test p-value 0.0000 0.0000 0.0000 0.0000

(b) Multiplicative seasonal ARIMA RUB/USD RUB/USD EUR/USD EUR/USD

Lag-order specification (1, 0, 1)(1, 0, 1)12 (1, 1, 1)(1, 0, 1)12 (1, 0, 1)(1, 0, 1)12 (1, 1, 1)(1, 0, 1)12

c 0.0691(0.1462) 0.0065(0.0117) 0.0915(0.1247) 0.0437(0.0400)

φ 0.9992∗∗∗(0.0023) 0.7906∗∗∗(0.0327) 0.9984∗∗∗(0.0022) −0.3350(0.4208)

Φ −0.0574(0.2556) −0.0358(0.3182) 0.1890(0.3325) 0.1897(0.3415)

θ 0.0634∗∗∗(0.0071) −0.6782∗∗∗(0.0378) −0.0128(0.0145) 0.3120(0.4246)

Θ 0.1707(0.2551) 0.1295(0.3180) −0.1287(0.3361) −0.1302(0.3453)

LL −1.1377 −1.1243 −1.4128 −1.4131

AIC 2.2868 2.2601 2.8370 2.8377

BIC 2.3152 2.2885 2.8654 2.8661

HQC 2.2976 2.2709 2.8478 2.8484

Notes: For the Augmented Dickey–Fuller test (Dickey and Fuller, 1979), the optimal lag-order is selected by using the Bayesian

information criterion (BIC). For the degree of fractional integration, the local Whittle estimator (Robinson 1995) and the Geweke

and Porter-Hudak estimator (Geweke and Porter-Hudak 1983) with lag-order 33 ≈ T 1/2 are used. For the ARCH (autoregressive

conditional heteroscedasticity) test (Engle 1982), lag order 4 is used. For normal distribution test, the Shapiro–Wilk test (Shapiro

and Wilk 1965) is used. The seasonal ARIMA(1, d, 1)(1, 0, 1)12 model is (1− φL)(1−ΦL12)(1−L)dpt = c+ (1 + θL)(1 +ΘL12)vt,

where L is the lag operator, and d = 0 or d = 1 is used. ∗∗∗ indicates parameter significance at the 1% level. According to the

log-likelihood (LL), Akaike information criterion (AIC), Bayesian information critetion (BIC), and Hannan–Quinn criterion (HQC)

metrics, the multiplicative seasonal ARIMA model is inferior to the score-driven state space models (see Tables 2 and 3).
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Table 2. Parameter estimates and model diagnostics for RUB to USD, 4 January 1999 to 27 January 2020 (weekly data).

Student’s t Skew-Gen-t EGB2 NIG MXN

κ 1.3256∗∗∗(0.0688) 1.3583∗∗∗(0.0513) 1.0232∗∗∗(0.0420) 0.2422∗∗∗(0.0634) 0.8198∗∗∗(0.1971)

γJan −0.0780∗∗∗(0.0180) −0.0757∗∗∗(0.0053) −0.0545∗∗∗(0.0196) −0.0126∗∗∗(0.0045) −0.0413∗∗(0.0204)

γFeb 0.1295+(0.0875) 0.1644∗∗∗(0.0607) 0.1366∗(0.0714) 0.0325∗(0.0193) 0.1115+(0.0737)

γMar 0.1785∗∗∗(0.0525) 0.2058∗∗∗(0.0297) 0.1537∗∗∗(0.0297) 0.0367∗∗∗(0.0122) 0.1269∗∗∗(0.0370)

γApr 0.6590∗∗∗(0.0771) 0.7074∗∗∗(0.0411) 0.5129∗∗∗(0.0340) 0.1211∗∗∗(0.0328) 0.4029∗∗∗(0.0974)

γMay −0.1065∗∗∗(0.0202) −0.1105∗∗∗(0.0102) −0.0823∗∗∗(0.0126) −0.0195∗∗∗(0.0058) −0.0656∗∗∗(0.0185)

γJun 0.0419(0.0408) 0.0496+(0.0309) 0.0430+(0.0278) 0.0104+(0.0071) 0.0366∗(0.0209)

γJul 0.2422∗∗∗(0.0602) 0.2376∗∗∗(0.0398) 0.1633∗∗∗(0.0362) 0.0384∗∗∗(0.0106) 0.1294∗∗∗(0.0427)

γAug 0.0958∗∗(0.0375) 0.0980∗∗∗(0.0133) 0.0696∗∗∗(0.0120) 0.0166∗∗∗(0.0055) 0.0565∗∗∗(0.0133)

γSep −0.0579(0.2899) −0.2238∗∗∗(0.0847) −0.1122(0.1116) −0.0281(0.0247) −0.1018∗(0.0577)

γOct 0.0591(0.0456) 0.0153(0.0697) 0.0269(0.0543) 0.0058(0.0123) 0.0156(0.0386)

γNov −0.0258+(0.0165) −0.0273∗∗∗(0.0101) −0.0189+(0.0116) −0.0044+(0.0029) −0.0150+(0.0094)

γDec −0.0792∗∗∗(0.0222) −0.0921∗∗∗(0.0207) −0.0749∗∗∗(0.0154) −0.0176∗∗∗(0.0057) −0.0595∗∗∗(0.0201)

ω −0.0118(0.0086) −0.0127+(0.0081) −0.0154∗∗(0.0075) −0.0018(0.0042) −0.0111+(0.0072)

β 0.9855∗∗∗(0.0075) 0.9854∗∗∗(0.0067) 0.9853∗∗∗(0.0062) 0.9855∗∗∗(0.0062) 0.9853∗∗∗(0.0064)

α 0.0958∗∗∗(0.0236) 0.1014∗∗∗(0.0204) 0.0860∗∗∗(0.0189) 0.0863∗∗∗(0.0192) 0.0835∗∗∗(0.0210)

λ0 −0.9802∗∗(0.3859) −1.0249∗∗∗(0.3810) −1.3724∗∗∗(0.4341) −0.4557(0.4067) −1.0157∗∗(0.4610)

ν 2.3331∗∗∗(0.3052) 2.3648∗∗∗(0.3127) 0.8288∗∗∗(0.3187) 1.5091∗∗∗(0.2794) 0.1631∗∗∗(0.0382)

η NA 0.6518∗∗∗(0.0297) 0.3984(0.2920) 0.2172∗∗∗(0.0476) 0.4043∗(0.2152)

τ NA 0.0927∗∗∗(0.0097) NA NA NA

LL −0.4555 −0.4492 −0.4468 −0.4471 −0.4485

AIC 0.9437 0.9347 0.9281 0.9288 0.9316

BIC 1.0256 1.0257 1.0146 1.0152 1.0180

HQC 0.9747 0.9691 0.9608 0.9615 0.9643

C1 0.9855 0.9854 0.9853 0.9855 0.9853

C2 0.7377 0.7287 0.7395 0.7418 0.7498

C3 −0.1966 −0.2051 −0.1943 −0.1929 −0.1859

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). Bold numbers indicate superior statistical performance. C1 < 1 indicates that filter λt is covariance stationarity. C2 < 1

indicates that those elements of the information matrix that correspond to the parameters of λt are finite. C3 < 0 indicates that

filter λt is invertible. +, ∗, ∗∗ and ∗∗∗ indicate significance at the 15%, 10%, 5% and 1% levels, respectively. Robust standard errors,

estimated by using the Huber–White sandwich estimator, are presented in parentheses.
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Table 3. Parameter estimates and model diagnostics for RUB to EUR, 4 January 1999 to 27 January 2020 (weekly data).

Student’s t Skew-Gen-t EGB2 NIG MXN

κ 1.0103∗∗∗(0.0750) 0.9806∗∗∗(0.0799) 0.8030∗∗∗(0.0482) 0.0776∗∗(0.0380) 1.5909+(1.1018)

γJan 0.1525∗(0.0821) 0.1482∗∗(0.0649) 0.1008+(0.0617) 0.0099(0.0083) 0.2076(0.1542)

γFeb 0.3899∗∗∗(0.0793) 0.3935∗∗∗(0.0688) 0.3356∗∗∗(0.0787) 0.0325∗(0.0172) 0.6669(0.4931)

γMar 0.0276(0.0295) 0.0219(0.0260) 0.0279(0.0250) 0.0027(0.0024) 0.0554(0.0736)

γApr 0.0549(0.0588) 0.0424(0.0547) 0.0400(0.0468) 0.0039(0.0046) 0.0821(0.1230)

γMay 0.1436(0.1174) 0.1609∗(0.0954) 0.0917(0.1052) 0.0093(0.0150) 0.1991(0.1919)

γJun 0.2299∗∗(0.1043) 0.2409∗∗∗(0.0895) 0.1738∗(0.0953) 0.0171(0.0163) 0.3557∗(0.1968)

γJul 0.3266∗∗(0.1413) 0.3468∗∗∗(0.1274) 0.2367(0.1691) 0.0234(0.0271) 0.4943∗(0.2899)

γAug 0.0420+(0.0275) 0.0372∗(0.0220) 0.0380(0.0292) 0.0036(0.0027) 0.0735(0.0923)

γSep 0.0413(0.0657) 0.0293(0.0642) 0.0427(0.0705) 0.0040(0.0064) 0.0794(0.1656)

γOct 0.1857∗∗∗(0.0301) 0.1837∗∗∗(0.0302) 0.1680∗∗∗(0.0313) 0.0161∗(0.0087) 0.3293(0.2374)

γNov −0.1167∗∗∗(0.0236) −0.1131∗∗∗(0.0228) −0.1026∗∗∗(0.0277) −0.0098∗∗(0.0047) −0.2002(0.1630)

γDec −0.0839∗∗∗(0.0123) −0.0792∗∗∗(0.0122) −0.0770∗∗∗(0.0143) −0.0074∗∗(0.0031) −0.1502(0.1231)

ω −0.0040(0.0046) −0.0040(0.0043) −0.0015(0.0032) 0.0088+(0.0059) −0.0085(0.0076)

β 0.9858∗∗∗(0.0085) 0.9868∗∗∗(0.0083) 0.9881∗∗∗(0.0069) 0.9884∗∗∗(0.0068) 0.9888∗∗∗(0.0065)

α 0.0610∗∗∗(0.0171) 0.0582∗∗∗(0.0197) 0.0512∗∗∗(0.0117) 0.0503∗∗∗(0.0129) 0.0489∗∗∗(0.0126)

λ0 −0.2236(0.4365) −0.2549(0.4859) 0.0037(0.0452) 0.8879∗(0.5254) −0.6147(0.5876)

ν 2.6425∗∗∗(0.3900) 2.9339∗∗∗(0.8613) 1.7225∗∗∗(0.4380) 2.4287∗∗∗(0.5400) 0.1859∗∗∗(0.0666)

η NA 0.6544∗∗∗(0.0596) 1.1663∗∗∗(0.3648) 0.2474∗∗∗(0.0808) 1.2909∗∗(0.6250)

τ NA 0.0401(0.0311) NA NA NA

LL −1.0515 −1.0496 −1.0400 −1.0404 −1.0410

AIC 2.1357 2.1355 2.1145 2.1153 2.1165

BIC 2.2176 2.2265 2.2009 2.2017 2.2029

HQC 2.1667 2.1699 2.1472 2.1480 2.1492

C1 0.9858 0.9868 0.9881 0.9884 0.9888

C2 0.8060 0.8137 0.7809 0.7885 0.7976

C3 −0.1272 −0.1232 −0.1544 −0.1524 −0.1459

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). Bold numbers indicate superior statistical performance. C1 < 1 indicates that filter λt is covariance stationarity. C2 < 1

indicates that those elements of the information matrix that correspond to the parameters of λt are finite. C3 < 0 indicates that

filter λt is invertible. +, ∗, ∗∗ and ∗∗∗ indicate significance at the 15%, 10%, 5% and 1% levels, respectively. Robust standard errors,

estimated by using the Huber–White sandwich estimator, are presented in parentheses.
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(a) Student’s t for uµ,t (b) Student’s t for uλ,t

(c) Skew-Gen-t for uµ,t (d) Skew-Gen-t for uλ,t

(e) EGB2 for uµ,t (f) EGB2 for uλ,t

(g) NIG for uµ,t (h) NIG for uλ,t

(i) MXN for uµ,t (j) MXN for uλ,t

Figure 1. Score functions, as functions of ǫt, for the RUB to USD currency exchange rate.

Notes: The ML estimates of the shape parameters are used, and it is assumed that λt = 0.
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(a) Student’s t for uµ,t (b) Student’s t for uλ,t

(c) Skew-Gen-t for uµ,t (d) Skew-Gen-t for uλ,t

(e) EGB2 for uµ,t (f) EGB2 for uλ,t

(g) NIG for uµ,t (h) NIG for uλ,t

(i) MXN for uµ,t (j) MXN for uλ,t

Figure 2. Score functions, as functions of ǫt, for the RUB to EUR currency exchange rate.

Notes: The ML estimates of the shape parameters are used, and it is assumed that λt = 0.
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(a) RUB to USD for the period of 4 January 1999 to 27 January 2020 (weekly data).

(b) RUB to EUR for the period of 4 January 1999 to 27 January 2020 (weekly data).

Figure 3. Evolution of the RUB to USD and RUB to EUR exchange rates.
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(a) vt for the period of 4 January 1999 to 27 January 2020 (weekly data).

(b) ǫt for the period of 4 January 1999 to 27 January 2020 (weekly data).

(c) st/µt for the period of 4 January 1999 to 27 January 2020 (weekly data).

Figure 4. Time series components of the RUB to USD exchange rate for the EGB2 distribution.
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(a) vt for the period of 4 January 1999 to 27 January 2020 (weekly data).

(b) ǫt for the period of 4 January 1999 to 27 January 2020 (weekly data).

(c) st/µt for the period of 4 January 1999 to 27 January 2020 (weekly data).

Figure 5. Time series components of the RUB to EUR exchange rate for the EGB2 distribution.
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