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∗School of Business, Universidad Francisco Marroqúın, Calle Manuel F. Ayau, Guatemala City, 01010, Guatemala.

E-mails: aayala@ufm.edu (Ayala), sblazsek@ufm.edu (Blazsek), adrian.licht@ufm.edu (Licht)

1



1. Introduction

In this paper, we apply results from the literature on signal extraction, and we present a new

approach of minimum mean squared error (MSE) signal extraction for score-driven state space

models of location, trend, seasonality, and scale for macroeconomic time series variables.

Signal extraction from economic or financial variables yt is important for statistical analyses

that support the decisions of economic agents (Erceg and Lewin 2003), or policymakers (Ghysels

1987; Bryan and Pike 1991; Cristadoro et al. 2005). From the literature on signal extraction,

some relevant works are Bell (1984), Bell and Hillmer (1988), McElroy (2008), and McElroy and

Maravall (2014), in which minimum MSE signal smoothing formulas are presented for signal

plus noise models. Those works use a variety of models, for which signal or noise or both is

non-stationary, and the error terms in the signal and noise equations are heteroskedastic, non-

Gaussian, and correlated. As an empirical contribution we apply the results of McElroy and

Maravall (2014) to signal smoothing for score-driven models, and as a theoretical contribution

we prove that the assumptions of those results are satisfied for the score-driven models.

The class of score-driven models are observation-driven (Cox 1981) state space models (Har-

vey 1989; Durbin and Koopman 2012), which are introduced in the works of Creal et al. (2008),

and Harvey and Chakravarty (2008). Those papers have started an extensive literature that

includes more than 200 publications until the date of the present paper. Score-driven models

represent one of the most important developments in the field of time series econometrics in the

last decade. The filters of score-driven models are updated by using the scaled conditional score

of the log-likelihood (LL) with respect to a time-varying parameter, and score-driven models are

estimated by using the maximum likelihood (ML) method (e.g. Harvey 2013; Creal et al. 2013;

Blasques et al. 2017). Score-driven models are robust to outliers and missing observations, and

the filters that update score-driven models are generalizations of the updating mechanisms of

classical time series models. In many cases, score-driven models have superior in-sample statis-

tical and out-of-sample predictive performances than classical models. This suggests that the

practical use of score-driven models for macroeconomic decisions will be important in the future,
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and there will be a practical need for straightforward smoothing methods for those models.

In the work of Harvey (2013, pp. 83-89), it is shown that the filtered signal E(st|y1, . . . , yt−1)

for t = 1, . . . , T and the smoothed signal E(st|y1, . . . , yT ) for t = 1, . . . , T differ for the score-

driven models. The work of Harvey (2013) is relevant to our paper, because it presents an

application of a state space smoothing recursions procedure (Koopman and Harvey 2003) to

first-order score-driven location models. According to Harvey (2013, p. 87), the generalization

of the state space smoothing recursions procedure to score-driven models with several lags is

not straightforward. The smoothing procedure that is suggested in the present paper can be

applied to score-driven models with several lags in a straightforward way.

Another paper from the literature that is relevant to our paper is the recent work of Buccheri

et al. (2019), in which a state space smoothing recursions procedure is suggested for the score-

driven location, scale, or duration model. The authors note that, as score-driven models are

observation-driven models, the time-varying parameters are one-step ahead predictable, hence,

the estimate of the filtered signal is improved in score-driven models, by using information from

contemporaneous and future observations in the smoothed signal. This is the main motivation

for the development of the smoothing method for score-driven models in our paper.

In the signal extraction procedure of this paper, the ML estimates of parameters of score-

driven models are obtained in the first step by using numerical maximization of the LL function,

and the minimum MSE signals are estimated in the second step by using a closed-form signal

smoothing formula. We suggest a smoothing procedure for score-driven models, which are more

complex than the score-driven models of Harvery (2013, p. 87) and Buccheri et al. (2019).

In the score-driven models of the present paper, score-driven location, trend, and seasonality

filters with constant and score-driven scale parameters are included. The smoothing procedure is

easy to apply in practice, because the minimum MSE signal extraction formula for score-driven

models is available in closed form (i.e., it is not determined by smoothing recursions).

In the signal plus noise models for score-driven data, the updating terms of the signal and

noise components are correlated time series. For the theoretical contribution, we present that the

3



assumptions of the minimum MSE signal extraction filter of the work of McElroy and Maravall

(2014) are satisfied for the following models: (i) Score-driven location model with constant

scale; for this model, the statistical properties of the score functions are presented in the work

of Harvey (2013, p. 61). (ii) Score-driven location model with score-driven scale; for this model,

estimation results for United States (US) inflation rate data are presented in the work of Harvey

(2013, p. 140). The statistical properties of the score functions of the score-driven location

model with score-driven scale are shown in the present paper. (iii) Score-driven trend plus

score-driven seasonality model with constant scale. (iv) Score-driven trend plus score-driven

seasonality model with score-driven scale. Models (iii) and (iv) include a new score-driven

seasonality specification, which is applied to the minimum MSE signal extraction filters.

For the empirical contribution, we use US inflation rate data for the period of January 1948

to May 2020, for which signal smoothing can be motivated by the following points:

First, the series derived from the inflation smoothing procedure could allow the private

sector to infer the present and future stance of monetary policy in a better way than the official

inflation series (which would be understood to contain more noise and less signal than the

smoothed inflation series). In relation to the use of smoothed inflation in the private sector,

we refer to the work of Erceg and Lewin (2003). Second, in central banks, it is common to

monitor one or more measures of core inflation (Rich and Steindel 2005). The core inflation

measure corrects the excessive volatility that the official inflation usually shows, since the latter

is affected by some relative price changes that are not of direct interest to the monetary policy.

There is a significant literature on alternative measures of core inflation, from which we refer to

the works of Bryan and Pike (1991) and Cristadoro et al. (2005). In the present paper, a novel

procedure to generate a measure of core inflation is presented.

The remainder of this paper is organized as follows: Section 2 reviews the literature. Section 3

presents the minimum MSE signal for correlated signal and noise. Section 4 presents the

method of signal smoothing for score-driven location models for constant and score-driven scales.

Section 5 presents the method of signal smoothing score-driven trend plus score-driven seasonal-
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ity models for constant and score-driven scales. Section 6 presents the empirical application for

the US inflation rate. Section 7 concludes. Supplementary Material presents technical details.

2. Review of the literature

2.1. Signal extraction

In the works of Bell (1984), and Bell and Hillmer (1988), minimum MSE signal extraction filters

are presented, for which either signal or noise or both is non-stationary, and the signal and

noise components are uncorrelated. In those works, signal extraction formulas are presented

by using the transformation approach (Ansley and Kohn 1985), which eliminates the effects of

the non-stationary initial conditions. In relation to this, we also refer to the works of Bell and

Hillmer (1984), and Bell (2004). In the work of Bell (1984, p. 662), it is shown that minimum

MSE signal extraction filters can be applied to non-Gaussian observations.

In the work of McElroy (2008), minimum MSE signal extraction filters are presented for

finitely-sampled non-stationary ARIMA (autoregressive integrated moving average) processes.

Signal smoothing formulas are provided, for which the updating terms of signal and noise,

{ut}Tt=1 and {vt}Tt=1, respectively, are uncorrelated. It is shown that the minimum MSE signal

extraction filter can be used for non-Gaussian observations (McElroy 2008, p. 991).

Several works perform signal smoothing for correlated signal and noise, for example, Bev-

eridge and Nelson (1981), Snyder (1985), Ghysels (1987), Ord et al. (1997), Hyndman et al.

(2002), Proietti (2006), and McElroy and Maravall (2014). From these works, McElroy and

Maravall (2014) is an extension of the aforementioned works of Bell (1984), Bell and Hillmer

(1988), and McElroy (2008). In the work of McElroy and Maravall (2014), minimum MSE sig-

nal extraction filters for correlated updating terms of signal and noise are presented, for which

either signal or noise or both is non-stationary, with heteroskedastic and non-Gaussian error

terms. The work of McElroy and Maravall (2014) is relevant to the present paper, because

signal and noise are correlated, and the updating terms are non-Gaussian for the score-driven

models. For all score-driven models of this paper, we show that ut and vt are contemporaneously

uncorrelated, but for some lags or leads ut and vt are correlated.
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2.2. Score-driven time series models

Score-driven models are named generalized autoregressive score (GAS) models (Creal et al.

2008), or dynamic conditional score (DCS) models (Harvey and Chakravarty 2008; Harvey

2013). Score-driven models are observation-driven time series models (Cox 1981), which are

alternatives to several classical observation-driven time series models. For several score-driven

models, the sufficient conditions of consistency and asymptotic normality of the ML estimates

are known (Blasques et al. 2017). Score-driven models are applied to I(0), co-integrated I(1),

and fractionally integrated variables. An advantage of score-driven models is that they are more

robust to outliers and missing observations than classical time series models (Harvey 2013).

An example of score-driven models is the quasi-AR (QAR) location model (Harvey 2013),

which is an alternative to the ARMA model (Box and Jenkins 1970). Another example of

score-driven models is the Beta-t-EGARCH (exponential generalized autoregressive conditional

heteroskedasticity) model (Harvey and Chakravarty 2008; Harvey 2013), which is an alternative

to the GARCH (Engle 1982; Bollerslev 1986), and EGARCH (Nelson 1991) models.

Univariate score-driven models, such as Beta-t-EGARCH, implement an optimal filtering

mechanism, according to the Kullback–Leibler divergence in favor of the true data-generating

process. In the work of Blasques et al. (2015), it is shown that, asymptotically, a score-driven

update of the time series model reduces the distance between the true conditional density and the

conditional density that is implied by the score-driven model, in expectation and at every step,

even for misspecified score-driven models. The authors show that only score-driven updates

have this property, by providing an information-theoretic support for the use of score-driven

models. The results of Blasques et al. (2015) are asymptotic results. Nevertheless, the recent

work of Blasques et al. (2020) supports the information-theoretic effective filtering mechanism

of score-driven volatility models for finite samples in practically significant cases.

3. Minimum MSE signal extraction filter for correlated signal and noise

In this section, we summarize the results of McElroy and Maravall (2014) for minimum MSE

signal extraction filters for correlated signal and noise, which we use for score-driven models.
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For variable yt with t = 1 . . . , T , the signal plus noise model is yt = st + nt, for which the

updating terms are defined as follows:

ut = αp(L)st = (1− α1L− · · · − αpLp)st (3.1)

vt = βm(L)nt = (1− β1L− · · · − βmLm)nt (3.2)

where the vectors (α1, . . . , αp) and (β1, . . . , βm) include time-invariant parameters, st represents

the signal component, and nt represents the noise component.

For the signal plus noise model of equations (3.1) and (3.2), the minimum MSE signal (or

smoothed signal) is ŝt = E(st|Y ), where Y ≡ (y1, . . . , yT )′. In the work of McElroy (2008),

it is shown that ŝt is also the minimum MSE signal when observations are generated from a

distribution other than the normal distribution. That is the case of the score-driven models of

our paper, in which the Student’s t-distribution is used.

The Student’s t-distribution generalizes the standard normal distribution, for which equa-

tions (3.1) and (3.2) are a linear Gaussian state space model (Harvey 1989), and it also provides

robustness to outliers for the score-driven models. Furthermore, the Student’s t-distribution is

useful, because some expected value formulas in this paper, which are used for the computation

of the minimum MSE signal, can be directly expressed from the model parameters.

First, we introduce notation in order to apply McElroy and Maravall (2014, Theorem 1) to

signal smoothing of score-driven models. In matrix notation, ut is U = ∆SS, where



u1

...

...

uT−p


=



−αp · · · · · · −α1 1 0 · · · · · · 0

0 −αp
. . . . . . −α1 1 0

. . .
...

...
. . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . 0

0 · · · · · · 0 −αp · · · · · · −α1 1





s−p+1

...

s0

s1

...

sT−p


(3.3)
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where U is a (T − p)× 1 vector, ∆S is a (T − p)× T matrix, and S is a T × 1 vector (Bell and

Hillmer, 1988). Moreover, in matrix notation (Bell and Hillmer 1988), vt is V = ∆NN , where



v1

...

...

vT−m


=



−βm · · · · · · −β1 1 0 · · · · · · 0

0 −βm · · · · · · −β1 1 0 · · · ...

...
. . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . 0

0 · · · · · · · · · −βm · · · · · · −β1 1





n−m+1

...

n0

n1

...

nT−m


(3.4)

where V is a (T −m)× 1 vector, ∆N is a (T −m)× T matrix, and N is a T × 1 vector.

Matrix ∆S with dimensions (T −d)× (T −m) is also used, where d = p+m, which is defined

by the first (T − d) rows and the first (T −m) columns of ∆S (McElroy and Maravall 2014).

Matrix ∆N with dimensions (T − d)× (T − p) is also used, which is defined by the first (T − d)

rows and the first (T − p) columns of ∆N (McElroy and Maravall 2014). Furthermore, matrix

∆ = ∆S∆N is also defined (McElroy and Maravall 2014).

The covariance matrices of U and V are CU with dimensions (T − p)× (T − p), and CV with

dimensions (T −m) × (T −m), respectively. The covariance matrix of the elements of U and

V , with dimensions (T − p) × (T −m) is CU,V , and CV,U = C ′U,V . Furthermore, the following

matrix is included in the minimum MSE signal extraction formula (McElroy and Maravall 2014):

CW ≡ ∆SCV ∆′S + ∆NCU∆′N + ∆NCU,V ∆′S + ∆SCV,U∆′N . Covariance matrices CU , CV , CW ,

CV,U , and CU,V are available in closed form for all score-driven models of this paper.

Second, in the work of McElroy and Maravall (2014, Theorem 1) it is assumed that: (A1)

Y ∗ ≡ (y1, . . . , yd)
′ are uncorrelated with ut and vt, for t > d. (A2) αp(·) and βm(·) are relatively

prime polynomials, i.e. polynomials αp(·) and βm(·) share no common zeros. (A3) {ut} and

{vt} have mean zero, are covariance stationary, are correlated, and are purely nondeterministic.

(A4) CU , CV , and CW are invertible. In Sections 4 and 5, we show that these assumptions are

satisfied for the score-driven location, trend, seasonality, and scale models. Under assumptions
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(A1) to (A4), the minimum MSE signal is Ŝ = FY , where the T × T matrix F is:

F = M−1(∆′NC
−1
V ∆N + PC−1

W ∆) (3.5)

M = ∆′SC
−1
U ∆S + ∆′NC

−1
V ∆N (3.6)

P = ∆′SC
−1
U CU,V ∆′S −∆′NC

−1
V CV,U∆′N (3.7)

All score-driven models of this paper can be written according to the representation of the

dynamic equations (3.1) and (3.2). Therefore, if (A1) to (A4) hold, then the signal smoothing

results of McElroy and Maravall (2014) can be applied to the score-driven models.

4. Score-driven location

4.1. Score-driven location with constant scale

In this section, we present minimum MSE signal extraction for the score-driven location model

(Harvey 2013), where the error terms of the signal and noise components are correlated, the

signal component st may be non-stationary, and the noise component nt is independent and

identically distributed (i.i.d.). The score-driven location model for {yt}Tt=1 is:

yt = st + nt = st + vt (4.1)

where nt = vt = exp(λ)εt, and εt ∼ t(ν) is an i.i.d. error term. We assume that ν > 2 (hence,

the second moment of εt exists). In this model, βm(L) is normalized to one. The log conditional

density of yt|Ft−1 ≡ yt|(y1, . . . , yt−1) is:

ln f(yt|Ft−1,Θ) = (4.2)

ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λ− ν + 1

2
ln

{
1 +

(yt − st)2

ν exp(2λ)

}
where ln(x) is the natural logarithm function, Θ represents the time-invariant parameters, Γ(x)

is the gamma function, and exp(x) is the exponential function.
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For the I(0) case, the signal is specified as a QAR(p) model (Harvey 2013, p. 63) as follows:

st = α1st−1 + . . .+ αpst−p + ut = α1st−1 + . . .+ αpst−p + ψ1lt−1 (4.3)

where the roots of (1 − α1z − . . . − αpz
p) = 0 lie outside the unit circle, and E(st) = 0.

Alternatively, for the I(1) case, the signal is specified as follows (Harvey 2013, p. 76):

st = st−1 + ut = st−1 + ψ1lt−1 (4.4)

where E(st) = 0; α1 = 1 and α2, . . . , αp are zeros. For all score-driven models of this paper, the

signal is equal to the filtered signal, i.e. st = E(st|y1, . . . , yt−1), because the signal is determined

by the history of past observations of the dependent variable. Equations (4.3) and (4.4) indicate

the elements of matrices ∆S and ∆S. The score function with respect to st is:

∂ ln f(yt|Ft−1,Θ)

∂st
=

ν + 1

ν exp(2λ)
× lt = k × lt = k ×

[
1 +

v2
t

ν exp(2λ)

]−1

vt (4.5)

= k × ν exp(λ)εt
ν + ε2t

where k is the scaling factor, and lt is the scaled score function (Harvey 2013). Harvey (2013)

shows that lt is i.i.d. with E(lt) = 0, and variance Var(lt) = ν2 exp(2λ)/[(ν + 3)(ν + 1)] <∞.

Score-driven models are estimated by using the ML method. The conditions of Harvey

(2013), Creal et al. (2013), and Blasques et al. (2017, 2018) can be applied to the score-driven

signal plus noise models with constant scale. We also refer to the paper of Blazsek et al. (2020),

in which ML conditions are proven for score-driven location plus score-driven scale models,

which can be applied to the score-driven signal plus noise models with score-driven scale.

4.2. Signal smoothing for score-driven location with constant scale

In this section, we prove that the assumptions of McElroy and Maravall (2014, Theorem 1)

hold for the score-driven location with constant scale model: (A1) d = p + m = p. Initial
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values Y ∗ = (y1, . . . , yp)
′ are uncorrelated with ut and vt for t > p, because (s1, . . . , sp)

′ and

(l1, . . . , lp)
′ are set to zero vectors. (A2) m = 0; therefore, polynomials αp(·) and βm(·) share no

common zeros. (A3) ut = ψ1lt−1 and vt = exp(λ)εt have mean zero, are covariance stationary,

because both lt, and vt are i.i.d. with zero mean; ut and vt are purely nondeterminstic due

to the model formulation. (A4) Matrices CU = {[ψ2
1ν

2 exp(2λ)]/[(ν + 3)(ν + 1)]} × IT−p and

CV = [exp(2λ)ν/(ν − 2)] × IT are invertible (Harvey 2013). CW and M are invertible for the

score-driven location model with constant scale. Matrix CU,V with dimensions (T − p)× T is:

CU,V =



0 · · · · · · · · · · · · · · · 0

C 0 · · · · · · · · · · · · 0

0 C 0
. . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 C 0 · · · 0


(4.6)

where C = Cov(ψ1lt, vt) = ψ1ν exp(2λ)/(ν + 1) (Harvey 2013). The location of C in the first

column of CU,V is the second row. Time series {lt} and {vt} are both independent. Hence, all

lags and leads of lt and vt are independent, and the remaining elements of CU,V are zero.

4.3. Score-driven location and score-driven scale

In this section, the score-driven location model (Harvey 2013) and the score-driven scale model

(Harvey 2013) are combined into a score-driven location model with score-driven scale, for

which we present the statistical properties of the score functions, and the minimum MSE signal

extraction filter. The updating terms of signal and noise are correlated, the signal component

may be non-stationary, and the zero mean noise component is conditionally heteroskedastic.

The score-driven location model with score-driven scale for {yt}Tt=1 is:

yt = st + nt = st + vt = st + exp(λt)εt (4.7)

where st and nt are signal and noise, respectively. In this model, βm(L) is normalized to
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one. We assume that nt|Ft−1 = vt|Ft−1 ∼ t[0, exp(λt), ν] is heteroskedastic with ν > 2, where

Ft−1 = (y1, . . . , yt−1). Therefore, the standardized error term εt ∼ t(ν) is i.i.d., and it has the

Student’s t-distribution. The log conditional density of yt|Ft−1 is:

ln f(yt|Ft−1,Θ) = (4.8)

ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λt −

ν + 1

2
ln

{
1 +

(yt − st)2

ν exp(2λt)

}
The signal st is specified as in (4.3) or (4.4), and the score function is:

∂ ln f(yt|Ft−1,Θ)

∂st
=

ν + 1

ν exp(2λt)
× lt = kt × lt = kt ×

[
1 +

v2
t

ν exp(2λt)

]−1

vt (4.9)

= kt ×
ν exp(λt)εt
ν + ε2t

where kt is the dynamic scaling factor, and lt is the scaled score function. The difference between

the score functions of (4.5) and (4.9) is that kt and λt are constant in (4.5), but they are dynamic

in (4.9). In Supplementary Material A, we show that lt is white noise with zero mean.

The time-varying log-scale λt is specified as follows:

λt = a+ bλt−1 + czt−1 =
a

1− b
+
∞∑
j=0

cbjzt−1−j =
a

1− b
+
∞∑
j=1

cbj−1zt−j (4.10)

where |b| < 1, E(λt) = a/(1− b), which is the Beta-t-EGARCH(1,1) model. The updating term

zt−1, named score function with respect to log-scale λt is:

zt =
∂ ln f(yt|Ft−1,Θ)

∂λt
=

(ν + 1)v2
t

ν exp(2λt) + v2
t

− 1 =
(ν + 1)ε2t
ν + ε2t

− 1 (4.11)

where the scaling factor is normalized to one, as in the work of Harvey (2013, p. 99). In

Supplementary Material A, we show that zt is i.i.d. with zero mean.
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4.4. Signal smoothing for score-driven location and score-driven scale

In this section, we prove that the assumptions of McElroy and Maravall (2014, Theorem 1) hold

for the score-driven location and score-driven scale model: (A1) d = p + m = p. Initial values

Y ∗ = (y1, . . . , yp)
′ is uncorrelated with ut and vt for t > p, because (s1, . . . , sp)

′, (l1, . . . , lp)
′, and

(z1, . . . , zp)
′ are set to zero vectors, and all elements of (λ1, . . . , λp)

′ are set to E(λt) = a/(1− b).

(A2) m = 0; thus, polynomials αp(·) and βm(·) share no common zeros. (A3) ut = ψ1lt−1

and vt = exp(λt)εt have mean zero, are covariance stationary, and are purely nondeterministic.

Variables ut and vt have zero mean and are covariance stationary, due to the properties of

the score functions; ut and vt are purely nondeterminstic due to the model formulation. (A4)

CV = σ2
V × IT and CU = ψ2

1σ
2
L × IT−p are invertible, where σ2

V and σ2
L, respectively, are:

(i) The conditional variance of vt|Ft−1 is

Var(vt|Ft−1) = E(v2
t |Ft−1) = exp(2λt)×

ν

ν − 2
(4.12)

By using the law of iterated expectations,

σ2
V = Var(vt) = E[exp(2λt)]×

ν

ν − 2
(4.13)

where (Harvey 2013, p. 102):

E[exp(2λt)] = exp

(
2a

1− b

) ∞∏
j=1

exp(−2cbj−1)β̃ν(2cb
j−1) (4.14)

β̃ν(x) = 1 +
∞∑
k=1

(
k−1∏
r=0

1 + 2r

ν + 1 + 2r

)
xk(ν + 1)k

k!
(4.15)

In (4.15), function β̃ν(x) is named Kummer’s confluent hypergeometric function.

(ii) The conditional variance of lt|Ft−1 is:

Var(lt|Ft−1) = E(l2t |Ft−1) = exp(2λt)×
ν2

(ν + 3)(ν + 1)
(4.16)
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By using the law of iterated expectations,

σ2
L = Var(lt) = E[exp(2λt)]×

ν2

(ν + 3)(ν + 1)
(4.17)

where the expectation is given by (4.14) and (4.15). CW and M are invertible for the score-driven

location model with score-driven scale.

Variables {ut} and {vt} are correlated. Matrix CU,V with dimensions (T − p)× T is:

CU,V =



B D2 · · · · · · · · · · · · DT

C0 B
. . . . . . . . . . . .

...

C1 C0 B
. . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

CJ · · · C1 C0 B D2
...


=



0 0 · · · · · · · · · · · · 0

C0 0
. . . . . . . . . . . . 0

0 C0 0
. . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 C0 0 · · · 0


(4.18)

where J = (T − p − 2). Element C0 = Cov(ψ1lt, vt) = ψ1νE[exp(2λt)]/(ν + 1), where (4.14)

and (4.15) are used for the computation of E[exp(2λt)]. In Supplementary Material B, C0 is

presented, and it is also shown that B, Ci for i = 1, . . . , J , and Dj for j = 2, . . . , T , are zeros.

5. Score-driven trend plus score-driven seasonality

5.1. Score-driven trend and seasonality with constant scale

For the score-driven location model, βm(L) is normalized to unity; hence, seasonality is not

modeled in the noise component nt. We extend the score-driven location model to the score-

driven trend plus score-driven seasonality model, for which we present minimum MSE signal

extraction in this paper.

In the score-driven trend plus score-driven seasonality model with constant scale for {yt}Tt=1,

the error terms of signal and noise are correlated, and signal and noise may be non-stationary:

yt = st + nt = st + ρt + It (5.1)

where st is the trend component, ρt is the seasonality component, and It = exp(λ)εt is the
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irregular component. We assume that εt ∼ t(ν) is an i.i.d. error term with ν > 2. Notation

st is used for the trend component, because the objective of this model is to extract the trend

from the observed seasonal data series. This implies that noise is the sum of the seasonal and

irregular components, as suggested in the work of McElroy (2008).

The log conditional density of yt|Ft−1 = yt|(y1, . . . , yt−1) is:

ln f(yt|Ft−1,Θ) = (5.2)

ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λ− ν + 1

2
ln

{
1 +

(yt − st − ρt)2

ν exp(2λ)

}
The signal is specified as in (4.3) or (4.4). In the work of McElroy (2008, p. 990), the

methodology is described regarding how the signal plus noise model, yt = st+nt, can be applied

to models with trend st plus seasonal ρt plus irregular It components. If the interest is to extract

the trend component from the observed data, then nt is defined as nt = ρt + It.

We have studied the possibility of applying a score-driven seasonal component for ρt, as

defined in the works of Harvey (2013, Section 3.6), and Harvey and Luati (2014), to the minimum

MSE signal methods of McElroy (2008), and McElroy and Maravall (2014). However, the

application proves to be not straightforward. Therefore, in this paper, we use a seasonality

specification, which is simpler than the models of Harvey (2013), and Harvey and Luati (2014),

but its application is more straightforward to minimum MSE signals.

Seasonality ρt is specified as a QAR(m) model with restricted parameters:

ρt = βmρt−m + Ψmlt−m (5.3)

where the period of seasonality is m > 1, β1, . . . , βm−1 are zeros, |βm| < 1, and E(ρt) = 0.

Equation (5.3) indicates the elements of ∆N and ∆N . Condition |βm| < 1, i.e. the covariance

stationarity of ρt, is important for (A2) of McElroy and Maravall (2014, Theorem 1). The score
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function with respect to (st + ρt) is:

∂ ln f(yt|Ft−1,Θ)

∂(st + ρt)
=

ν + 1

ν exp(2λ)
× lt = k × lt = k ×

[
1 +

I2
t

ν exp(2λ)

]−1

It (5.4)

= k × ν exp(λ)εt
ν + ε2t

where k is the scaling factor, and lt is the scaled score function. The difference between the score

functions of (4.5) and (5.4) is that the derivative of the log-density in (4.5) is with respect to st

and the derivative of the log-density in (5.4) is with respect to (st + ρt). Scaled score function

lt is i.i.d. with E(lt) = 0, and variance Var(lt) = ν2 exp(2λ)/[(ν + 3)(ν + 1)] <∞.

5.2. Signal smoothing for score-driven trend and seasonality with constant scale

In this section, we prove that the assumptions of McElroy and Maravall (2014, Theorem 1) hold

for the score-driven trend and seasonality with constant scale model: (A1) d = p + m. Initial

values Y ∗ = (y1, . . . , yp+m)′ is uncorrelated with ut and vt for t > p+m, because (s1, . . . , sp+m)′,

(l1, . . . , lp+m)′, and (ρ1, . . . , ρp+m)′ are set to zero vectors. (A2) Since |βm| < 1, polynomials

αp(·) and βm(·) share no common zeros. (A3) The noise component is:

nt = βmnt−m + (It − βmIt−m + Ψmlt−m) = βmnt−m + vt (5.5)

Variables ut = ψ1lt−1 and vt = It−βmIt−m + Ψmlt−m have mean zero, are covariance stationary,

and are purely nondeterministic. (A4) Matrix CU = {[ψ2
1ν

2 exp(2λ)]/[(ν + 3)(ν + 1)]} × IT−p is

invertible (Harvey 2013). Matrix CV with dimensions (T −m)× (T −m) is invertible, because

CV is a full-rank square matrix with elements:

Var(vt) = Var(It − βmIt−m + Ψmlt−m) =
ν exp(2λ)

ν − 2
+
β2
mν exp(2λ)

ν − 2
+

Ψ2
mν

2 exp(2λ)

(ν + 3)(ν + 1)
(5.6)

Cov(vt, vt−m) = Cov(−βmIt−m + Ψmlt−m, It−m) = −βmν exp(2λ)

ν − 2
+

Ψmν exp(2λ)

ν + 1
(5.7)

where we use the following result from Harvey (2013, p. 62): Cov(It, lt) = ν exp(2λ)/(ν + 1).
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The remaining elements of CV are zeros. In addition, CW and M are invertible.

Matrix CU,V with dimensions (T − p)× (T −m) is:

CU,V =



0 · · · · · · · · · · · · · · · 0 Dm 0 · · · 0

C0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . Dm

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · 0 C0 0 · · · · · · · · · 0



(5.8)

where C0 = Cov(ψ1lt, vt) = ψ1ν exp(2λ)/(ν + 1), and

Dm = Cov(ψ1lt−m, It − βmIt−m + Ψmlt−m) (5.9)

= −ψ1βm
ν exp(2λ)

ν + 1
+ ψ1Ψm

ν2 exp(2λ)

(ν + 3)(ν + 1)

The location of C0 in the first column of CU,V is the second row, and the location of Dm in

the first row of CU,V is the m-th column. For the formulations of C0 and Dm, results from the

work of Harvey (2013) are used. The remaining elements of CU,V are zero, because lt and It are

independent time series, and lt is a continuous function of only It.

5.3. Score-driven trend, seasonality, and scale

The score-driven trend plus score-driven seasonality model with score-driven scale is:

yt = st + nt = st + ρt + It (5.10)

where It = exp(λt)εt is the irregular component, and εt ∼ t(ν) is i.i.d. with ν > 2. Filter st is
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(4.3) or (4.4), ρt is (5.3), and the score function with respect to (st + ρt) is:

∂ ln f(yt|Ft−1,Θ)

∂(st + ρt)
=

ν + 1

ν exp(2λt)
× lt = kt × lt = kt ×

[
1 +

I2
t

ν exp(2λt)

]−1

It (5.11)

= kt ×
ν exp(λt)εt
ν + ε2t

where Ft−1 = (y1, . . . , yt−1), kt is the scaling factor, and lt is the scaled score function lt. The

difference between (4.9) and (5.11) is that the derivative of the log-density in (4.9) is with respect

to st and the derivative of the log-density in (5.11) is with respect to (st + ρt). Scaled score

function lt is white noise with zero mean. Variables λt and zt are defined as in (4.10) and (4.11),

respectively. Hence, zt is i.i.d. with zero mean.

5.4. Signal smoothing for score-driven trend, seasonality, and scale

In this section, we prove that the assumptions of McElroy and Maravall (2014, Theorem 1) hold

for the score-driven trend, seasonality, and scale model: (A1) d = p + m. Initial values Y ∗ =

(y1, . . . , yp+m)′ is uncorrelated with ut and vt for t > p+m, because (s1, . . . , sp+m)′, (l1, . . . , lp+m)′,

and (ρ1, . . . , ρp+m)′ are set to zero vectors, and each element of (λ1, . . . , λp+m)′ is set to E(λt) =

a/(1− b). (A2) Since |βm| < 1, polynomials αp(·) and βm(·) share no common zeros. (A3) ut =

ψ1lt−1 and vt = It−βmIt−m + Ψmlt−m have mean zero, are covariance stationary, and are purely

nondeterministic. Variables ut and vt have mean zero and are covariance stationary due to the

properties of the score functions. (A4) Matrix CU = {{ψ2
1ν

2E[exp(2λt)]}/[(ν+3)(ν+1)]}×IT−p

is invertible (Harvey 2013). Matrix CV with dimensions (T −m)× (T −m) is invertible, because

it is a full-rank square matrix, with elements (Harvey 2013):

Var(vt) = Var(It − βmIt−m + Ψmlt−m) (5.12)

=
νE[exp(2λt)]

ν − 2
+
β2
mνE[exp(2λt)]

ν − 2
+

Ψ2
mν

2E[exp(2λt)]

(ν + 3)(ν + 1)

Cov(vt, vt−m) = Cov(−βmIt−m + Ψmlt−m, It−m) (5.13)
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= −βmνE[exp(2λt)]

ν − 2
+

ΨmνE[exp(2λt)]

ν + 1

where E[exp(2λt)] is given by (4.14) and (4.15). Matrices CW and M are invertible for the

score-driven trend, seasonality, and scale model. In Supplementary Material C, we show that

CU,V with dimensions (T − p)× (T −m) is:

CU,V =



0 · · · · · · · · · · · · · · · 0 Dm 0 · · · 0

C0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . Dm

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · 0 C0 0 · · · · · · · · · 0



(5.14)

where C0 = Cov(ψ1lt, It − βmIt−m + Ψmlt−m) = ψ1νE[exp(2λt)]/(ν + 1), and

Dm = Cov(ψ1lt−m, It − βmIt−m + Ψmlt−m) (5.15)

= −ψ1βm
νE[exp(2λ)]

ν + 1
+ ψ1Ψm

ν2E[exp(2λ)]

(ν + 3)(ν + 1)

The location of C0 in the first column of CU,V is the second row, and the location of Dm in the

first row of CU,V is the m-th column.

6. Empirical application

6.1. Trend extraction from seasonally adjusted US inflation rate

Monthly data from the US inflation rate 100 × ln(CPIt/CPIt−1) (consumer price index, CPI)

are used for the period of January 1948 to May 2020, and the pre-sample period is December

1947 that we use for CPI0. The source of the seasonally adjusted CPI data is Federal Research

Economic Data (FRED) (ticker: CPIAUCSL). Smoothed signal estimation for the US inflation

rate is relevant for policymakers at the Federal Reserve.
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The score-driven models are estimated for the seasonally adjusted US inflation rate minus

its sample mean, by using the model yt = st + nt, which ensures that E(yt) = 0 under the

assumption that US inflation rate is I(0). In practice, monthly US inflation rate signals can be

obtained after the smoothing procedures, by adding the sample average of monthly US inflation

rate to the estimates of st and ŝt.

In Panel (a) of Table 1, the descriptive statistics of US inflation rate are presented. As data

are seasonally adjusted, we assume that the information that is needed for a policy decision is

the trend component of the inflation rate, not the seasonal component.

In Panel (b) of Table 1, the ML parameter estimates of the QAR(1), QAR(2), and QAR(3)

score-driven location specifications with constant and score-driven scales are presented. We use

different values of p, in order to support a correct model specification (Supplementary Material

A). In the work of Harvey (2013, p. 75), the use of the likelihood-based model selection criteria

is suggested for score-driven models. Therefore, we compare statistical performances by using

the Bayesian information criterion (BIC).

The score-driven location specifications with score-driven scale are superior to the score-

driven location specifications with constant scale (Table 1). Moreover, the BIC metric suggests

the use of the QAR(2) specification for each location model. The use of QAR(2) is also motivated

by the facts that α2 is not significant for the score-driven QAR(3) location model, and α2 and

α3 are not significant for the score-driven QAR(3) location plus score-driven scale model.

In Figure 1, for the QAR(2) location model with constant scale, we present the evolution of

the seasonally adjusted US inflation rate yt, its filtered signal st, and its smoothed signal ŝt. In

Figure 2, for the QAR(2) location model with score-driven scale, we present the evolution of

the seasonally adjusted US inflation rate yt, its filtered signal st, its smoothed signal ŝt, and the

time-varying log-scale parameter λt. The figures indicate that the smoothed signal estimates

are similar for the score-driven location models with constant and score-driven scale parameters,

which shows the robustness of the two-step signal smoothing procedure.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURES 1 AND 2]
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6.2. Trend extraction from not seasonally adjusted (NSA) US inflation rate

For the score-driven location model βm(L) = 1, hence, seasonality is not modeled in the noise

component of the score-driven location models. Nevertheless, it may be the case in practice that

trend extraction from a NSA macroeconomic variable is needed for an economic decision. We

present an application of the score-driven trend plus score-driven seasonality model to the NSA

US inflation rate (FRED ticker: CPIAUCNS) for the period of January 1948 to May 2020.

Similarly to the application on the seasonally adjusted US inflation rate, signal smoothing is

performed for the NSA US inflation rate minus its sample mean, which defines yt in this section.

We assume that the period of seasonality is m = 12, which is supported by the local maximum

points of the sample periodogram for the NSA US inflation rate (Figure 3).

In Panel (a) of Table 2, the descriptive statistics are presented, from which a relevant result

is that NSA US inflation rate is I(0). Motivated by this result, different covariance stationary

QAR(p) specifications (equation (4.3)) are used.

In Panel (b) of Table 2, the ML estimates are presented for the score-driven trend plus

score-driven seasonality model with constant scale and score-driven scale for the QAR(1) plus

QAR(12) and QAR(2) plus QAR(12) alternatives. QAR lag selection is done using the BIC

metric, which suggests the use of QAR(1) plus QAR(12). The use of the optimal p supports the

assumption on the dynamically complete density function.

In Figure 4, the evolution of the NSA US inflation rate yt, its filtered signal st, its smoothed

signal ŝt, and the seasonality component ρt, for t = 1, . . . , T , for the score-driven trend and

seasonality model with constant scale, QAR(1) plus QAR(12), is presented. In Figure 5, the

evolution of the NSA US inflation rate yt, its filtered signal st, its smoothed signal ŝt, the

seasonality component ρt, and the time-varying log-scale parameter λt, for t = 1, . . . , T , for

the score-driven trend and seasonality model with score-driven scale, QAR(1) plus QAR(12),

is presented. The annual seasonality component of the US inflation rate is significant with a

time-varying amplitude (Figures 4(d) and 5(d)). The smoothed signal for the NSA US inflation

rate (Figures 4(c) and 5(c)) is similar to the smoothed signal for the seasonally adjusted US
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inflation rate (see Figures 1(c) and 2(c)). This indicates the robustness of the signal smoothing

procedure for score-driven models as applied to seasonal observable variables.

[APPROXIMATE LOCATION OF TABLE 2 AND FIGURES 3 TO 5]

7. Conclusions

Signal smoothing is important in statistical applications preceding economic decisions. Moti-

vated by this, in recent decades minimum MSE signal extraction formulas have been developed

for a great variety of signal plus noise models in the literature. We have applied results from

the literature on signal extraction to score-driven models, to perform signal smoothing for score-

driven location, trend, and seasonality models with constant and score-driven scale parameters.

We have presented the methodology regarding how minimum MSE signal extraction is applied

in a straightforward way to score-driven models with higher than first-order location, trend, and

seasonality components with constant and score-driven scale parameters.

Real dataset-based results have indicated the robustness of the signal smoothing procedure

for seasonally adjusted and NSA US inflation rate time series for the period of January 1948

to May 2020. Our results have suggested the practical use of the following two-step signal

smoothing procedure for score-driven models: (i) The score-driven model are estimated by

using the ML method. (ii) The ML estimates are substituted into the minimum MSE signal

extraction filter. The computer codes are available for practitioners from the authors upon

request. The results have indicated that the novel signal smoothing procedure of this paper can

be easily applied to complex score-driven signal plus noise models, in order to perform signal

smoothing before economic decisions.
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Table 1: Descriptive statistics of seasonally adjusted US inflation rate, and ML estimates for the score-driven location models.

(a). Descriptive statistics of monthly US inflation rate, 100× ln(CPIt/CPIt−1), seasonally adjusted

Start Date January 1948 Standard deviation 0.3327

End date May 2020 Skewness 0.3929

T 869 Excess kurtosis 3.8868

Mean 0.2752 Shapiro–Wilk test statistic (p-value) 0.9370∗∗∗(0.0000)

Median 0.2413 ADF test statistic, constant (p-value) −4.3487∗∗∗(0.0004)

Minimum −1.7864 ADF test statistic, trend (p-value) −4.4208∗∗∗(0.0020)

Maximum 1.7938 ARCH test statistic (p-value) 208.5340∗∗∗(0.0000)

(b). Parameter estimates (yt is monthly US inflation rate minus sample mean)

Score-driven location with constant scale Score-driven location with score-driven scale

QAR(1) specification QAR(1) plus Beta-t-EGARCH(1,1) specification

α1 0.9677∗∗∗(0.0140) α1 0.9761∗∗∗(0.0121)

ψ 0.4296∗∗∗(0.0736) ψ 0.3035∗∗∗(0.0530)

λ −1.7474∗∗∗(0.0426) a −0.1609∗∗(0.0783)

ν 3.4709∗∗∗(0.4228) b 0.9027∗∗∗(0.0453)

c 0.1209∗∗∗(0.0274)

ν 5.3380∗∗∗(0.9249)

BIC −0.0167 BIC −0.1413

Score-driven location with constant scale Score-driven location with score-driven scale

QAR(2) specification QAR(2) plus Beta-t-EGARCH(1,1) specification

α1 0.5726∗∗∗(0.0922) α1 0.4129∗∗(0.1749)

α2 0.3858∗∗∗(0.0921) α2 0.5549∗∗∗(0.1738)

ψ 0.5641∗∗∗(0.0710) ψ 0.4399∗∗∗(0.0558)

λ −1.7477∗∗∗(0.0435) a −0.1527∗∗(0.0742)

ν 3.5561∗∗∗(0.4552) b 0.9077∗∗∗(0.0429)

c 0.1217∗∗∗(0.0277)

ν 5.4228∗∗∗(0.9909)

BIC −0.0247 BIC −0.1530

Score-driven location with constant scale Score-driven location with score-driven scale

QAR(3) specification QAR(3) plus Beta-t-EGARCH(1,1) specification

α1 0.6450∗∗∗(0.1812) α1 0.4649∗∗(0.2207)

α2 0.0292(0.2909) α2 0.3482(0.3801)

α3 0.2820∗∗(0.1404) α3 0.1545(0.1839)

ψ 0.5858∗∗∗(0.0690) ψ 0.4524∗∗∗(0.0514)

λ −1.7285∗∗∗(0.0444) a −0.1384∗(0.0773)

ν 3.8151∗∗∗(0.5472) b 0.9146∗∗∗(0.0449)

c 0.1145∗∗∗(0.0289)

ν 5.6994∗∗∗(1.1649)

BIC −0.0203 BIC −0.1437

Notes: United States (US); maximum likelihood (ML); consumer price index (CPI); augmented Dickey–Fuller (ADF); autoregressive

conditional heteroskedasticity (ARCH); Bayesian information criterion (BIC); quasi-autoregression (QAR); exponential generalized

ARCH (EGARCH). The null hypothesis of the Shapiro–Wilk test (Shapiro and Wilk 1965) is normal distribution. For the ADF

tests with constant and with constant plus linear time trend, BIC-based optimal lag selection is used. For the ARCH test, 5 lags

are used. The Shapiro–Wilk test rejects normal distribution for US inflation rate. The ADF test (Dickey and Fuller 1979) indicates

that US inflation rate is I(0), motivating the use of (4.3). The ARCH test (Engle 1982) suggests significant volatility dynamics. For

the parameter estimates, robust standard errors are reported in parentheses. The standard errors of ML parameters are estimated

by using the Huber Sandwich Estimator (Blasques et al. 2017). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,

respectively. The best specification, according to BIC, is indicated by bold letters.
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Table 2: Descriptive statistics of NSA US inflation rate, and ML estimates for the score-driven trend and seasonality models.

(a). Descriptive statistics of monthly US inflation rate, 100× ln(CPIt/CPIt−1), not seasonally adjusted

Start Date January 1948 Standard deviation 0.3770

End date May 2020 Skewness 0.0437

T 869 Excess kurtosis 2.5195

Mean 0.2755 Shapiro–Wilk test statistic (p-value) 0.9650(0.0000)

Median 0.2792 ADF test statistic, constant (p-value) −3.8284(0.0026)

Minimum −1.9339 ADF test statistic, trend (p-value) −3.8757(0.0130)

Maximum 1.7898 ARCH test statistic (p-value) 191.2120(0.0000)

(b). Parameter estimates and model diagnostics (Yt is monthly US inflation rate minus sample mean)

Score-driven trend plus seasonality with constant scale Score-driven trend plus seasonality with score-driven scale

QAR(1)-QAR(12) QAR(1)-QAR(12)-Beta-t-EGARCH(1,1)

α1 0.9714∗∗∗(0.0125) α1 0.9729∗∗∗(0.0106)

ψ1 0.3173∗∗∗(0.0570) ψ1 0.2222∗∗∗(0.0325)

β12 0.9794∗∗∗(0.0131) β12 0.9696∗∗∗(0.0145)

Ψ12 0.2086∗∗∗(0.0388) Ψ12 0.1596∗∗∗(0.0253)

λ −1.5473∗∗∗(0.0404) a −0.0012(0.0014)

ν 3.7753∗∗∗(0.4619) b 0.9967∗∗∗(0.0027)

c 0.0712∗∗∗(0.0117)

ν 7.4370∗∗∗(1.2212)

BIC 0.3482 BIC 0.2111

Score-driven trend plus seasonality with constant scale Score-driven trend plus seasonality with score-driven scale

QAR(2)-QAR(12) QAR(2)-QAR(12)-Beta-t-EGARCH(1,1)

α1 0.7598∗∗∗(0.0840) α1 0.6629∗∗∗(0.0764)

α2 0.2436∗∗∗(0.0788) α2 0.3048∗∗∗(0.0777)

ψ1 0.3855∗∗∗(0.0616) ψ1 0.2849∗∗∗(0.0467)

β12 0.9800∗∗∗(0.0127) β12 0.9694∗∗∗(0.0137)

Ψ12 0.2066∗∗∗(0.0389) Ψ12 0.1601∗∗∗(0.0240)

λ −1.5478∗∗∗(0.0403) a −0.0012(0.0016)

ν 3.8024∗∗∗(0.4670) b 0.9966∗∗∗(0.0036)

c 0.0726∗∗∗(0.0178)

ν 7.6265∗∗∗(1.8434)

BIC 0.3509 BIC 0.2116

Notes: Not seasonally adjusted (NSA); United States (US); maximum likelihood (ML); consumer price index (CPI); augmented

Dickey–Fuller (ADF); autoregressive conditional heteroskedasticity (ARCH); Bayesian information criterion (BIC); exponential gen-

eralized ARCH (EGARCH); quasi-autoregression (QAR). The null hypothesis of the Shapiro–Wilk test is normal distribution. For

the ADF tests with constant and with constant plus linear time trend, BIC-based optimal lag selection is used. For the ARCH

test, 5 lags are used. For the parameter estimates, robust standard errors are reported in parentheses. The standard errors of

ML parameters are estimated by using the Huber Sandwich Estimator. ∗∗ and ∗∗∗ indicate significance at the 5% and 1% levels,

respectively. The best specification, according to BIC, is indicated by bold letters.
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(a). Dependent variable yt for t = 1, . . . , T (January 1948 to May 2020).

(b). Filtered signal st for t = 1, . . . , T (January 1948 to May 2020).

(c). Smoothed signal ŝt for t = 1, . . . , T (January 1948 to May 2020).

Figure 1: Seasonally adjusted US inflation for score-driven location (constant scale), QAR(2).

Notes: yt is monthly seasonally adjusted US inflation rate minus its sample mean.
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(a). Dependent variable yt for t = 1, . . . , T (January 1948 to May 2020).

(b). Filtered signal st for t = 1, . . . , T (January 1948 to May 2020).

(c). Smoothed signal ŝt for t = 1, . . . , T (January 1948 to May 2020).

(d). Scale λt for t = 1, . . . , T (January 1948 to May 2020).

Figure 2: Seasonally adjusted US inflation for score-driven location (score-driven scale), QAR(2)-Beta-t-EGARCH(1,1).

Notes: yt is monthly seasonally adjusted US inflation rate minus its sample mean.

29



Figure 3: Periodogram for monthly NSA US inflation rate.

Notes: The x-axis corresponds to Fourier frequencies 2πj/T for j = 1, . . . , T/2, and the ticks on the x-axis correspond to j. Three

local maximum values correspond to j = 73, 145, and 218. These values divided by T = 869 are 0.0840, 0.1669, and 0.2509,

respectively. As monthly data are used, we expect that the peaks in the periodogram shall occur close to the frequencies 2πk/12 for

k = 1, 2, . . . , 6. The values of k/12 for k = 1, 2, and 3 are 0.0833, 0.1667, and 0.2500, respectively, which are in close correspondence

to the local maximum-based estimates of j/T , and support the use of annual seasonality (m = 12).
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(a). Dependent variable yt for t = 1, . . . , T (January 1948 to May 2020).

(b). Filtered signal st for t = 1, . . . , T (January 1948 to May 2020).

(c). Smoothed signal ŝt for t = 1, . . . , T (January 1948 to May 2020).

(d). Seasonality ρt for t = 1, . . . , T (January 1948 to May 2020).

Figure 4: NSA US inflation for score-driven trend and seasonality (constant scale), QAR(1)-QAR(12).

Notes: yt is monthly NSA US inflation rate minus its sample mean.
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(a). Dependent variable yt for t = 1, . . . , T (January 1948 to May 2020).

(b). Filtered signal st for t = 1, . . . , T (January 1948 to May 2020).

(c). Smoothed signal ŝt for t = 1, . . . , T (January 1948 to May 2020).

(d). Seasonality ρt for t = 1, . . . , T (January 1948 to May 2020).

Figure 5(a)-(d): NSA US inflation for score-driven trend and seasonality (score-driven scale), QAR(1)-QAR(12)-Beta-t-EGARCH(1,1).

Notes: yt is monthly NSA US inflation rate minus its sample mean.
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(e). Scale λt for t = 1, . . . , T (January 1948 to May 2020).

Figure 5(e): NSA US inflation for score-driven trend and seasonality (score-driven scale), QAR(1)-QAR(12)-Beta-t-EGARCH(1,1).

Notes: yt is monthly NSA US inflation rate minus its sample mean.
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Supplementary Material:

Optimal signal extraction for score-driven models
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School of Business, Universidad Francisco Marroqúın, Guatemala City

Abstract: In this paper, a novel approach of signal smoothing for score-driven models is sug-

gested, by using results from the literature on minimum mean squared error (MSE) signals. The

new smoothing procedure can be applied to more general score-driven models than the state

space smoothing recursions procedures from the literature. Score-driven location, trend, and

seasonality models with constant and score-driven scale parameters for macroeconomic variables

are used. The two-step smoothing procedure is computationally fast, and it uses closed-form for-

mulas for smoothed signals. In the first step, the score-driven models are estimated by using the

maximum likelihood (ML) method. In the second step, the ML estimates of the score functions

are substituted into the minimum MSE signal extraction filter. Applications for monthly data

of the seasonally adjusted and the not seasonally adjusted (NSA) United States (US) inflation

rate variables for the period of 1948 to 2020 are presented.

Keywords: Signal extraction, Minimum mean squared error (MSE) signals, Dynamic conditional

score (DCS), Generalized autoregressive score (GAS)
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Supplementary Material A

For the score-driven models of this paper, the scaled score function with respect to location lt,

and the score function with respect to log-scale zt have the following properties: (i) We assume

that f(yt|Ft−1,Θ), where Ft−1 = (y1, . . . , yt−1) and Θ represents the time-invariant parameters,

is a correctly specified conditional density (Wooldridge 1994). Therefore,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂st

]
× ∂st
∂Θ′

= 0 (A.1)

where index t− 1 indicates expectations that are conditional on Ft−1. Since ∂st/∂Θ′ 6= 0,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂st

]
= Et−1

[
ν + 1

ν exp(2λt)
lt

]
= Et−1(lt)

ν + 1

ν exp(2λt)
= 0 (A.2)

As a consequence, Et−1(lt) = 0, i.e. lt is a martingale difference sequence (MDS). Moreover,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂Θ′

]
= Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂λt

]
× ∂λt
∂Θ′

= 0 (A.3)

Since ∂λt/∂Θ′ 6= 0,

Et−1

[
∂ ln f(yt|Ft−1,Θ)

∂λt

]
= Et−1(zt) = 0 (A.4)

Thus, zt is a MDS. (ii) E(lt) = 0 and E(zt) = 0, due to the law of iterated expectations. (iii) lt

and zt are contemporaneously correlated, as both are functions of vt. (iv) Scaled score function

lt is not i.i.d., as it depends on λt. (v) We assume that |λt| < λmax <∞ for all t (Blazsek et al.

2020), which sets an exogenous bound for dynamic scale. The consequence of this assumption

is that lt is a bounded function of εt (Blazsek et al. 2020). Therefore, Var(lt) < ∞, and lt is

white noise. If the roots of (1 − α1z − . . . − αpz
p) = 0 lie outside the unit circle, then st is

covariance stationary for (4.3). (vi) zt is a bounded function of εt (Harvey 2013). Therefore,

Var(zt) < ∞, and zt is white noise. If |b| < 1, then λt is covariance stationary. (vii) Due to
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|λt| < ∞, ∂lt/∂λt and ∂zt/∂st are bounded functions of εt (Blazsek et al. 2020). (viii) ∂lt/∂st

and ∂zt/∂λt are bounded functions of εt (Blazsek et al. 2020). (ix) Scaled score function lt is

an F -measurable function of εt (White 2001), because lt is a continuous function of εt. Scaled

score function lt is strictly stationary and ergodic, because lt is an F -measurable function of

(ε1, . . . , εt), and because εt is strictly stationary and ergodic (White 2001). (x) Score function

zt is i.i.d., because zt is a continuous function of εt, and because εt is i.i.d. (White 2001). (xi)

Score function zt is an F -measurable function of εt (White 2001), because zt is a continuous

function of εt (Harvey 2013). Score function zt is strictly stationary and ergodic, because zt is

an F -measurable function of εt, and because εt is strictly stationary and ergodic (White 2001).

Supplementary Material B

Matrix CU,V with dimensions (T − p)× T is represented as:

CU,V =



B D2 · · · · · · · · · · · · DT

C0 B
. . . . . . . . . . . .

...

C1 C0 B
. . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

CJ · · · C1 C0 B D2
...


=



0 0 · · · · · · · · · · · · 0

C0 0
. . . . . . . . . . . . 0

0 C0 0
. . . . . . . . .

...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 C0 0 · · · 0


(B.1)

where J = (T − p− 2). In the following, we formulate the elements B, C0, Ci for i = 1, . . . , J ,

and Dj for j = 2, . . . , T .

First, B = Cov(ψ1lt−1, vt) = Cov[ψ1lt−1, exp(λt)εt] = 0, because vt is a MDS:

E(vt|Ft−1) = E[exp(λt)εt|Ft−1] = exp(λt)E[εt|Ft−1] = 0 (B.2)

Therefore, E(lt−1vt|Ft−1) = lt−1E(vt|Ft−1) = 0, hence, E(vtlt−1) = 0. Second, C0 = Cov(ψ1lt, vt) =

ψ1νE[exp(2λt)]/(ν + 1), where (4.14) and (4.15) are used for the computation of E[exp(2λt)].

Third, Ci = Cov[ψ1lt+i, exp(λt)εt] = E[ψ1lt+i exp(λt)εt] for 1 ≤ i ≤ J , for which we use the
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following conditional expectation:

E[ψ1lt+i exp(λt)εt|Ft+i−1] = ψ1E[lt+i|Ft+i−1]︸ ︷︷ ︸
0

exp(λt)εt = 0 (B.3)

which is true because lt is a MDS. Hence, Ci = 0 due to the law of iterated expectations. Fourth,

Dj = Cov[ψ1lt−j, exp(λt)εt] = 0 for j = 2, . . . , T , because of the following arguments. We use

the following conditional expectation:

E[ψ1lt−j exp(λt)εt|Ft−j] = ψ1lt−jE[exp(λt)εt|Ft−j] (B.4)

We use the law of iterated expectations (White 2001) as follows:

E[exp(λt)εt|Ft−j] = E{E[exp(λt)εt|Ft−1]|Ft−j} = E{exp(λt)E[εt|Ft−1]︸ ︷︷ ︸
0

|Ft−j} = 0 (B.5)

which holds because E(|vt|) <∞ (White 2001). We use (B.5), and the law of iterated expecta-

tions for (B.4), and we obtain that Dj = 0.

Supplementary Material C

Matrix CU,V with dimensions (T − p)× (T −m) is represented as:

CU,V =



B D2 · · · · · · DT−p · · · · · · Dm · · · · · · DT−m

C0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

C1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . Dm

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

CJ · · · · · · · · · C1 C0 B D2 · · · · · · DT−p



(C.1)

where J = (T − p− 2). In the following, we formulate the elements B, C0, Ci for i = 1, . . . , J ,

and Dj for j = 2, . . . , T −m, respectively:
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First, B = Cov(ψ1lt−1, It − βmIt−m + Ψmlt−m) = 0 for m > 1, because:

Cov(ψ1lt−1, It−βmIt−m +Ψmlt−m) = ψ1E(lt−1It)︸ ︷︷ ︸
(i)

−ψ1βmE(lt−1It−m)︸ ︷︷ ︸
(ii)

+ψ1ΨmE(lt−1lt−m︸ ︷︷ ︸
(iii)

) = 0

(C.2)

In the following, we present (i), (ii), and (iii):

(i) It is a MDS, because

E(It|Ft−1) = E[exp(λt)εt|Ft−1] = exp(λt)E[εt|Ft−1] = exp(λt)E(εt) = 0 (C.3)

Hence, E(lt−1It|Ft−1) = lt−1E(It|Ft−1) = 0, and E(lt−1It) = 0.

(ii) We write the following conditional mean:

E(lt−1It−m|Ft−m) = E(lt−1|Ft−m)It−m = 0 (C.4)

We use the law of iterated expectations:

E(lt−1|Ft−m) = E[E(lt−1|Ft−2)|Ft−m] = E[0|Ft−m] = 0 (C.5)

which holds due to the MDS property of lt, and E(|lt−1|) < ∞ (White 2001). By using

the law of iterated expectations, E(lt−1It−m) = 0.

(iii) E(lt−1lt−m) is zero because lt is a MDS with finite variance.

Second, C0 = Cov(ψ1lt, It−βmIt−m + Ψmlt−m) = ψ1νE[exp(2λt)]/(ν+ 1), where E[exp(2λt)]

is given by (4.14) and (4.15), due to the following arguments.

C0 = ψ1 Cov(lt, It)︸ ︷︷ ︸
(i)

−ψ1βm Cov(lt, It−m)︸ ︷︷ ︸
(ii)

+ψ1Ψm Cov(lt, lt−m)︸ ︷︷ ︸
(iii)

(C.6)
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In the following, we present (i), (ii), and (iii):

(i) Cov(lt, It) = νE[exp(2λt)]/(ν + 1), where E[exp(2λt)] is given by (4.14) and (4.15).

(ii) For Cov(lt, It−m), we use the following conditional expectation:

E(ltIt−m|Ft−m) = E(lt|Ft−m)It−m (C.7)

We use the law of iterated expectations (White 2001):

E(lt|Ft−m) = E[E(lt|Ft−1)︸ ︷︷ ︸
0

|Ft−m] = 0 (C.8)

which holds because E(|lt|) < ∞, and lt is a MDS. By using the law of iterated expecta-

tions, E(ltIt−m) = 0. Hence, Cov(lt, It−m) = 0 for all m.

(iii) Cov(lt, lt−m) is zero because lt is a MDS with finite variance.

Third, Ci = Cov(ψ1lt+i, It − βmIt−m + Ψmlt−m) = 0, for i = 1, . . . , J , due to the following

arguments:

Ci = ψ1 Cov(lt+i, It)︸ ︷︷ ︸
(i)

−ψ1βm Cov(lt+i, It−m)︸ ︷︷ ︸
(ii)

+ψ1Ψm Cov(lt+i, lt−m)︸ ︷︷ ︸
(iii)

(C.9)

In the following, we present (i), (ii), and (iii):

(i) We use the following conditional expectation:

E(lt+iIt|Ft) = E(lt+i|Ft)It (C.10)

We use the law of iterated expectations (White 2001):

E(lt+i|Ft) = E[E(lt+i|Ft+i−1)︸ ︷︷ ︸
0

|Ft] = 0 (C.11)
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which holds because E(|lt|) < ∞, and lt is a MDS. Hence, by using the law of iterated

expectations, Cov(lt+i, It) = 0 for i = 1, . . . , J .

(ii) We use the following conditional expectation:

E(lt+iIt−m|Ft−m) = E(lt+i|Ft−m)It−m (C.12)

We use the law of iterated expectations (White 2001):

E(lt+i|Ft−m) = E[E(lt+i|Ft+i−1)︸ ︷︷ ︸
0

|Ft−m] = 0 (C.13)

which holds because E(|lt|) < ∞, and lt is a MDS. Hence, by using the law of iterated

expectations, Cov(lt+i, It−m) = 0 for i = 1, . . . , J .

(iii) Cov(lt+i, lt−m) = 0 for i = 1, . . . , J , because lt is a MDS with finite variance.

Fourth, Dj = Cov(ψ1lt−j, It−βmIt−m +Ψmlt−m) for j = 2, . . . , T −m is computed as follows:

Dj = ψ1 Cov(lt−jIt)︸ ︷︷ ︸
(i)

−ψ1βm Cov(lt−jIt−m)︸ ︷︷ ︸
(ii)

+ψ1Ψm Cov(lt−jlt−m)︸ ︷︷ ︸
(iii)

(C.14)

In the following, we present (i), (ii), and (iii):

(i) We use the following conditional expectation:

E(lt−jIt|Ft−j) = E(It|Ft−j)lt−j = E[exp(λt)εt|Ft−j]lt−j (C.15)

We use the law of iterated expectations (White 2001):

E{E[exp(λt)εt|Ft−1]|Ft−j} = E{exp(λt)E[εt|Ft−1]︸ ︷︷ ︸
0

|Ft−j} = 0 (C.16)

which is due to E|It| < ∞ and E(εt) = 0. As a consequence, Cov(lt−jIt) = 0 for j =
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2, . . . , T −m.

(ii) If j > m, then we use the following conditional expectation:

E(lt−jIt−m|Ft−j) = E(It−m|Ft−j)lt−j = E[exp(λt−m)εt−m|Ft−j]lt−j (C.17)

= E{E[exp(λt−m)εt−m|Ft−m−1]|Ft−j}lt−j = E{exp(λt−m)E[εt−m|Ft−m−1]︸ ︷︷ ︸
0

|Ft−j}lt−j = 0

which is due to E(|It|) <∞ (White 2001). In this case, E(lt−jIt−m) = 0.

If j = m, then (Harvey 2013):

E(lt−mIt−m) =
νE[exp(2λt)]

ν + 1
(C.18)

If j < m, then we use the following conditional expectation:

E(lt−jIt−m|Ft−m) = E(lt−j|Ft−m)It−m = E[E(lt−j|Ft−j−1)︸ ︷︷ ︸
0

|Ft−m]It−m = 0 (C.19)

which is due to E(|lt|) <∞ (White 2001), and lt is a MDS. In this case, E(lt−jIt−m) = 0.

(iii) If j > m, then we use the following conditional expectation:

E(lt−jlt−m|Ft−j) = E(lt−m|Ft−j)lt−j = E[E(lt−m|Ft−m−1)︸ ︷︷ ︸
0

|Ft−j]lt−j = 0 (C.20)

which is due to E(|lt|) <∞ (White 2001), and lt is a MDS. For this case, E(lt−jlt−m) = 0.

If j = m, then (Harvey 2013):

E(l2t−m) =
ν2E[exp(2λt)]

(ν + 3)(ν + 1)
(C.21)
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If j < m, then we use the following conditional expectation:

E(lt−jlt−m|Ft−m) = E(lt−j|Ft−m)lt−m = E[E(lt−j|Ft−j−1)︸ ︷︷ ︸
0

|Ft−m]lt−m = 0 (C.22)

which is due to E(|lt|) <∞ (White 2001), and lt is a MDS. For this case, E(lt−jlt−m) = 0.

In summary, matrix CU,V with dimensions (T − p)× (T −m) is:

CU,V =



0 · · · · · · · · · · · · · · · 0 Dm 0 · · · 0

C0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . Dm

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · 0 C0 0 · · · · · · · · · 0



(C.23)

where C0 = Cov(ψ1lt, It − βmIt−m + Ψmlt−m) = ψ1νE[exp(2λt)]/(ν + 1), and

Dm = Cov(ψ1lt−i, It−βmIt−m+Ψmlt−m) = −ψ1βm
νE[exp(2λ)]

ν + 1
+ψ1Ψm

ν2E[exp(2λ)]

(ν + 3)(ν + 1)
(C.24)

where E[exp(2λt)] is given by (4.14) and (4.15).
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