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Abstract:

This is the first empirical study in the literature, in which the statistical and volatility forecasting

performances of the recent quasi-score-driven EGARCH (exponential generalized autoregressive con-

ditional heteroscedasticity) models are evaluated. Quasi-score-driven EGARCH models are compared

with all relevant score-driven EGARCH models from the literature, and the asymmetric power ARCH

(A-PARCH) and GARCH models. The following score-driven distributions are studied: Student’s

t-distribution; general error distribution (GED); generalized t-distribution (Gen-t); skewed general-

ized t-distribution (Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2);

normal-inverse Gaussian distribution (NIG); Meixner distribution (MXN). All combinations of these

distributions are used for (i) the distribution of the dependent variable, and (ii) the distribution which

defines the quasi-score function updating term of the quasi-score-driven filters. Daily data are used for

the Standard & Poor’s 500 (S&P 500) index. We find that quasi-score-driven EGARCH is superior

to score-driven EGARCH, A-PARCH, and GARCH. In-sample results are reported for the period of

2000 to 2020, providing evidence in favour of the quasi-score-driven EGARCH model for the last two

decades. Out-of-sample forecasting results are reported for the period of the coronavirus pandemic for

2020, providing evidence in favour of the quasi-score-driven EGARCH model for a crisis period.
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1 Introduction

In this paper, empirical results are reported on the statistical performance and volatility forecasting

accuracy of the recent quasi-score-driven volatility model (Blasques, Francq, and Laurent 2020). The

quasi-score-driven volatility model is an extension of the score-driven volatility model, where the latter

model is introduced in the works of Creal, Koopman, and Lucas (2008) and Harvey and Chakravarty

(2008). Both models are observation-driven models (Cox 1981): (i) Score-driven models are updated

by the partial derivatives of the log conditional density of the dependent variable with respect to a

dynamic parameter, and the updating terms are named score functions. (ii) For the quasi-score-driven

models of this paper, the updating terms are defined as the partial derivatives of the log conditional

density of a distribution, which may be different from the distribution of the dependent variable.

The updating terms of the quasi-score-driven models are named quasi-score functions. A score-driven

model is obtained as a special case of a corresponding quasi-score-driven model, if the distribution of

the dependent variable coincides with the distribution which defines the quasi-score function.

The research question of the present paper is whether the statistical and forecasting performances

of the quasi-score-driven volatility models are superior to the statistical and forecasting performances

of the score-driven and the classical dynamic volatility models. To the best of our knowledge, this

question has not been studied in the body of literature.

We investigate this research question in a general way, to obtain valid conclusions about the per-

formances of quasi-score-driven volatility models. The analysis is general due to the following points:

(i) All relevant probability distributions from the literature of score-driven volatility models are

considered, and from those distributions all possible combinations of the probability distribution of the

dependent variable, and the probability distribution which defines the quasi-score function, are created.

Detailed mathematical formulations for all quasi-score-driven volatility models are presented.

(ii) Three classical volatility models are considered: A-PARCH (asymmetric power autoregressive

conditional heteroscedasticity) (Ding et al. 1993), Gaussian-GARCH (generalized ARCH) with lever-

age effects (Engle 1982; Bollerslev 1986; Glosten, Jagannathan, and Runkle 1993), and t-GARCH with

leverage effects (Bollerslev 1987; Glosten, Jagannathan, and Runkle 1993). The consideration of these

volatility models is motivated by the work of Hansen and Lunde (2005), in which the volatility fore-

casting performances of 330 GARCH-type models are compared. The results of Hansen and Lunde

(2005) indicate that the volatility forecasting performances of A-PARCH and GARCH with leverage

effects (Black 1976) are very difficult to beat by using classical volatility model alternatives.

(iii) Data for the Standard & Poor’s 500 (S&P 500) stock index and its realized volatility are used.

The former variable is a general representation of the stock market valuation of United States (US)

firms, and the latter variable is used as a proxy of true volatility for volatility forecasting performance

evaluation. For these two variables, the maximum observation periods which are available from our

data sources are crossed, providing the sample period of January 2000 to December 2020.

The practically most relevant empirical application of this paper is an out-of-sample volatility

forecasting performance analysis for the period of the coronavirus pandemic. We perform one-step

ahead volatility forecasting for the period of January 2020 to December 2020, by using a rolling-
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window approach of estimation and forecasting. The dynamic volatility models are compared by using

the Giacomini–White test of out-of-sample forecasting accuracy (Giacomini and White 2006).

The empirical results indicate that the in-sample statistical and forecasting performances of the

quasi-score-models are superior to the in-sample statistical and forecasting performances of the score-

driven and the classical dynamic volatility models. The out-of-sample results indicate that, for the

highly volatile period of the coronavirus pandemic, the quasi-score-driven models forecast volatility

more accurately than the score-driven and the classical dynamic volatility models.

The remainder of this paper is organized as follows: Section 2 reviews the literature. Section 3

presents the quasi-score-driven model. Section 4 presents the statistical inference method. Section 5

presents the empirical results. Section 6 concludes. Technical details are presented in an Appendix.

2 Review of the literature

2.1 Classical dynamic volatility models

In the work of Engle (1982), the ARCH model of dynamic volatility is introduced, which is extended

in the works of Bollerslev (1986, 1987) to the Gaussian-GARCH and t-GARCH models, respectively.

In the work of Nelson (1991), the EGARCH model is introduced, in which the dynamics of the log

conditional variance of returns are formulated, and leverage effects (Black 1976) are included in the log

conditional variance equation. In the work of Glosten, Jagannathan, and Runkle (1993), the GARCH

model is extended, by including leverage effects in the conditional variance equation. In the work

of Ding, Engle, and Granger (1993), the A-PARCH model for a power of the conditional standard

derivation is introduced, which generalizes the ARCH and GARCH models, approximates the long

memory property of stock returns, and includes leverage effects in the filter driving conditional volatility.

In the work of Hansen and Lunde (2005), empirical evidence is presented for the volatility forecasting

performances of the A-PARCH and GARCH models. The subject matter of the present paper is

in relation to several classical dynamic volatility models from the body of literature, because the

statistical and forecasting performances of quasi-score-driven models are compared with the statistical

and forecasting performances of the A-PARCH, Gaussian-GARCH, and t-GARCH models.

2.2 Score-driven volatility models

The first score-driven volatility model in the literature is the Beta-t-EGARCH model (Harvey and

Chakravarty 2008), which assumes the Student’s t-distribution for financial returns. In relation to

Beta-t-EGARCH, we also refer to the works of Creal, Koopman, and Lucas (2013) and Harvey (2013).

For the ML estimation of score-driven models, we refer to the theoretical results of the works of Creal,

Koopman, and Lucas (2011, 2013), Harvey (2013), Blasques, Koopman, and Lucas (2015, 2017), and

Blasques, Gorgi, Lucas, and Wintenberger (2018). In the work of Blasques, Koopman, and Lucas (2015)

it is shown for score-driven filters, such as Beta-t-EGARCH, that a score-driven update, asymptotically

and in expectation, reduces the Kullback–Leibler divergence in favour of the true data generating

process at every step. The authors also show that only score-driven updates have this property. In
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the work of Blasques, Lucas, and van Vlodrop (2020) simulation-based results are presented, which

support the use of the score-driven filters for finite samples.

Alternatives to Beta-t-EGARCH are: GED-EGARCH (general error distribution EGARCH) (Har-

vey 2013); Beta-Skew-t-EGARCH (skewed t-distribution EGARCH) (Harvey and Sucarrat 2014);

EGB2-EGARCH (exponential generalized beta distribution of the second kind EGARCH) (Caivano

and Harvey 2014); Beta-Skew-Gen-t-EGARCH (skewed generalized t-distribution EGARCH) (Harvey

and Lange 2017); NIG-EGARCH (normal-inverse Gaussian distribution EGARCH) (Blazsek, Ho, and

Liu 2018); MXN-EGARCH (Meixner distribution EGARCH) (Blazsek and Haddad 2020).

In the recent work of Blasques, Francq, and Laurent (2020), the class of quasi-score-driven models is

introduced, and general theoretical results on the statistical inference of quasi-score-driven models are

developed. As an example, the authors present the quasi-score-driven Beta-t-GARCH model (Harvey

and Chakravarty), in which the degrees of freedom parameters of the t-distribution of the dependent

variable, and the t-distribution which defines the quasi-score function, differ. For the quasi-score-driven

Beta-t-GARCH model, theoretical results of statistical inference are presented, Monte Carlo simulation

experiments about the small sample properties of the quasi-likelihood (QL) estimator and the ML

estimator are shown, and empirical results about statistical performance for 408 stocks from the S&P

500 index are reported. In the present paper, we report extended empirical results on the statistical

performances and the volatility forecasting accuracies of a variety of quasi-score-driven EGARCH

models for the S&P 500, for which all models are estimated by using the ML method.

3 Quasi-score-driven EGARCH models

The quasi-score-driven EGARCH models are state space models, which are specified by using the

measurement equation for the return of a financial asset, and the transition equation for a dynamic

variable that drives volatility. The measurement equation for the financial return yt is:

yt = exp(λt)εt (1)

for t = 1, . . . , T . The constant parameter in equation (1) is set to zero, which has implications on the

transformations of the observed return data with respect to risk premium dynamics. Volatility dynamics

are specified according to EGARCH for the dynamic scale parameter exp(λt), which is conditional on

Ft−1 ≡ (y1, . . . , yt−1,Θ), where Θ is the vector of time-invariant parameters. The conditional standard

deviation of yt|Ft−1 is denoted σt, and it is interpreted as the one-step ahead volatility forecast.

The independent and identically distributed (i.i.d.) error term εt, is specified according to the

following alternatives: (i) the Student’s t-distribution; (ii) general error distribution (GED) (Harvey

2013); (iii) generalized t-distribution (Gen-t); (iv) skewed generalized t-distribution (Skew-Gen-t) (Mc-

Donald and Michelfelder 2017); (v) exponential generalized beta distribution of the second kind (EGB2)

(Caivano and Harvey 2014); (vi) normal-inverse Gaussian (NIG) distribution (Barndorff-Nielsen and

Halgreen 1977); (vii) the Meixner distribution (MXN) (Schoutens 2002). These distributions are the

most relevant ones in the literature of score-driven EGARCH models, which we use in order to reach

general conclusions on the in-sample and out-of-sample performances of quasi-score-driven volatility
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models. The log conditional density of the dependent variable is denoted ln f(yt|Ft−1,Θ).

The transition equation is a quasi-score-driven EGARCH model with leverage effects:

λt = ω + βλt−1 + αut−1 + α∗sgn(−εt−1)(ut−1 + 1) (2)

for t = 2, . . . , T , where the time-invariant parameters are ω, β, α, and α∗, and parameter λ1 is used in

order to initialize filter λt at t = 1. Moreover, sgn(·) is the signum function that indicates positive or

negative unexpected return for the previous period, in order to capture leverage effects.

The updating term in equation (2) is the quasi-score function with respect to λt that is defined

as ut = ∂ ln g(yt|Ft−1,Θ)/∂λt, where g(yt|y1, . . . , yt−1,Θ) ≡ g(yt|Ft−1,Θ) is a conditional density

function. We show that ut is i.i.d. with finite variance for all score-driven and quasi-score-driven

models of this paper. For g(yt|Ft−1,Θ), the same probability distribution alternatives are considered

as for f(yt|Ft−1,Θ). In the Appendix, for each probability distribution of this paper, the formulas of

log-density ln f(yt|Ft−1,Θ), score function ut, and conditional volatility σt are presented.

If the conditional densities f(yt|Ft−1,Θ) and g(yt|Ft−1,Θ) coincide, then a score-driven EGARCH

model is obtained. For example, if the Student’s t-distribution t(ν) is selected for both f(yt|Ft−1,Θ)

and g(yt|Ft−1,Θ), then the Beta-t-EGARCH model with leverage effects (Harvey and Chakravarty

2008; Harvey 2013) is obtained. For the score-driven EGARCH models, Θ includes (ω, β, α, α∗, λ1),

and the common shape parameters of f(yt|Ft−1,Θ) and g(yt|Ft−1,Θ).

If f(yt|Ft−1,Θ) and g(yt|Ft−1,Θ) differ, then a quasi-score-driven EGARCH model is obtained.

The quasi-score-driven models include the cases when the same distribution is used for f(yt|Ft−1,Θ)

and g(yt|Ft−1,Θ), but the shape parameters in those densities differ. For example, t(ν) is selected for

f(yt|Ft−1,Θ), and t(ν†) is selected for g(yt|Ft−1), where ν 6= ν† (Blasques, Francq, and Laurent 2020).

If ν = ν†, then the Beta-t-EGARCH model with leverage effects is obtained. Hence, the score-driven

models are special cases of the quasi-score-driven models. For the quasi-score-driven EGARCH models,

Θ includes (ω, β, α, α∗, λ1), and all shape parameters of f(yt|Ft−1,Θ) and g(yt|Ft−1,Θ).

In Figure 1, for each probability distribution, we present the score function ut, as a function of

εt. For each distribution we present the estimate of ut, by using S&P 500 data for the period of

3 January 2000 to 14 December 2020. By interpreting Figure 1, in the following we show that the

variance of ut is finite: For the Student’s t, Gen-t, and Skew-Gen-t distributions, ut is a continuous and

bounded function of εt. Hence, all moments of ut are finite for the Student’s t, Gen-t, and Skew-Gen-t

distributions. For the GED, all moments of εt are finite, and ut increases at a lower rate than ε2t as

|εt| → ∞. Hence, the moments of ut at least up to the second moment are finite. For the EGB2, NIG,

and MXN distributions, all moments of εt are finite, and ut increases linearly as |εt| → ∞. Hence, the

moments of ut at least up to the second moment are finite. An important further result is that ut is

a continuous function of the i.i.d. εt error term for all distributions. Hence, ut is also i.i.d. for all

score-driven and quasi-score-driven models (White 2001).

In a first step, we estimated equation (2) under the restriction α∗ = 0, because some distributions of

this paper which define ut are skewed probability distributions. Those distributions make a difference

between positive and negative unexpected returns within the error term. Nevertheless, the empirical
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results for α∗ = 0 and α∗ 6= 0 for the S&P 500 indicate that, in addition to the use of a skewed

probability distribution for εt, the use of the leverage effects term greatly improves the volatility

forecasting accuracy. Therefore, all results of this paper are estimated according to equation (2).

By using the quasi-score-driven EGARCH model, general conclusions can be obtained about the

research question of this paper: Are the in-sample statistical and out-of-sample forecasting perfor-

mances of quasi-score-driven EGARCH models superior to the in-sample statistical and out-of-sample

forecasting performances of score-driven EGARCH and classical volatility models?

[APPROXIMATE LOCATION OF FIGURE 1]

4 Statistical inference

The parameters of the quasi-score-driven models are estimated by using the ML method (Wooldridge

1994; Davidson and MacKinnon 2004):

Θ̂ = arg max
Θ

LL(y1, . . . , yT |Θ) = arg max
Θ

T∑
t=1

ln f(yt|Ft−1,Θ) (3)

For theoretical results on ML, we refer to the work of Blasques, Francq, and Laurent (2020). The

maximization of equation (3) is performed numerically for all quasi-score-driven models. Alternative

sets of initial values of parameters are used for the estimation of each model, to find the global maximum

of the likelihood function. The computer codes are available from the authors upon request.

5 Empirical results

5.1 Data

Daily S&P 500 index st data are used for the period of 3 January 2000 to 14 December 2020 (source

of data: Yahoo Finance). Daily S&P 500 log-returns are ỹt = 100× ln(st/st−1) for t = 1, . . . , T (in %

points), and s0 is from pre-sample data. Descriptive statistics of ỹt are presented in Table 1-A.

For the quasi-score-driven models the constant parameter in equation (1) is set to zero. Therefore,

alternative ARMA (AR moving average) specifications are estimated in a first step for ỹt. For lag-

order selection, we use the specific to general approach and the Bayesian information criterion (BIC)

(Davidson and MacKinnon 2004) (Table 1-B). According to the results, the AR(2) specification provides

the lowest BIC. Hence, the dependent variable of all volatility models of this paper is defined by

the residuals of the AR(2) model, and those residuals, named unexpected returns, are denoted yt.

Descriptive statistics of yt are presented in Table 1-C. From Table 1-A and Table 1-C, we highlight

that the serial correlation is changed from −0.1130 for ỹt to 0.0001 for yt. The evolution of S&P 500

log-returns ỹt and unexpected returns yt are presented in Figures 2-A and 2-B, respectively.

The use of yt, instead of the observed ỹt, has the following advantages for model performance com-

parison: (i) Mean dynamics are modelled in the same way for all volatility models. Hence, the volatility

forecasting performances of those models are more comparable. As alternatives to yt, we also used con-

ditional mean models with AR and QAR (quasi-AR) (Harvey 2013) risk premium specifications for ỹt,
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but the volatility forecasting performances of those models were inferior to the volatility forecasting

performances of the specifications of this paper. (ii) Each econometric model includes only one dynamic

equation, which reduces the numerical problems with the numerical ML estimation procedures. The

robust estimation procedures are needed for the out-of-sample volatility forecasting procedures of this

paper, which involve hundreds of estimations for each model. (iii) The theoretical results on the ML

estimator of the work of Blasques, Francq, and Laurent (2020) can be used for the quasi-score-driven

volatility models of the present paper, but those conditions are not valid for quasi-score-driven risk

premium plus quasi-score-driven volatility models.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 2]

5.2 Statistical performance

The statistical performances of the volatility models are compared, by using the following likelihood-

based model selection metrics: LL, Akaike information criterion (AIC), BIC, Hannan–Quinn criterion

(HQC) (Davidson and MacKinnon 2004). The use of AIC, BIC, and HQC for the selection of score-

driven models is suggested in the work of Harvey (2013, p. 75). The estimates of LL, AIC, BIC, and

HQC for the period of 3 January 2000 to 14 December 2020 are presented in Tables 2-A and 2-B.

The main conclusions of the in-sample analysis of statistical performances are the following: (i) For

each probability distribution, there are some quasi-score-driven models which have better statistical

performances than the score-driven model. This is indicated by bold numbers in Tables 2-A and 2-B.

(ii) For the classical volatility models, the statistical performance of the t-GARCH with leverage effects

model is superior to the statistical performances of the A-PARCH and Gaussian-GARCH with leverage

effects models. (iii) There are quasi-score-driven models with better statistical performances than the

t-GARCH with leverage effects model. This is indicated by using ∗∗ in Tables 2-A and 2-B for the

best-performing model from all specifications, which is always a quasi-score-driven model.

[APPROXIMATE LOCATION OF TABLE 2]

5.3 Prediction accuracy

One-step ahead forecasts of volatility σt are compared with a proxy of true volatility. Prediction

accuracies are compared by using the following loss functions (Hansen and Lunde 2005; Patton 2011):

MSE1,i,t = (σ∗t − σi,t)2 MSE2,i,t = [(σ∗t )
2 − σ2

i,t]
2

QLIKEi,t =

{
(σ∗

t )2

σ2
i,t
− ln

[
(σ∗

t )2

σ2
i,t

]
− 1

}
R2LOGi,t =

{
ln

[
(σ∗

t )2

σ2
i,t

]}2

MAE1,i,t = |σ∗t − σi,t| MAE2,i,t = |(σ∗t )2 − σ2
i,t|

(4)

for model i and for each period of the forecasting window t = 1, . . . , Tf , where σ∗t is a proxy of

true volatility. In this paper, the square root of realized variance of daily S&P 500 returns is used

for σ∗t (source of data: Oxford-Man Institute of Quantitative Finance (OMI), https://realized.oxford-

man.ox.ac.uk/data/download). From the realized variance data file of OMI, variable ‘rv5’ is used, as
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in the work of Harvey and Lange (2018). The realized variance data for the S&P 500 are available

from January 2000, which determines the time period of the full sample of the present paper.

In-sample results—The estimates of the mean loss functions for the period of 1 February 2000 to 14

December 2020 are presented in Tables 3-A and 3-B. In-sample one-step ahead forecasting of volatility

is performed, by using the parameter estimates for the period of 3 January 2000 to 14 December 2020.

The first month of the observations, i.e. January 2000, is excluded from the forecasting window, to

reduce the negative effects of the initialization of the volatility filter on parameter estimation precision.

In Tables 3-A and 3-B, each panel presents the forecasting accuracy for a particular distribution of

the dependent variable. In each panel, the mean loss functions of the score-driven model are presented

in the first line, and the mean loss functions of the quasi-score-driven models are presented in the

remaining lines. In the last panel of Tables 3-A and 3-B, the mean loss functions of the A-PARCH,

Gaussian-GARCH with leverage effects, and t-GARCH with leverage effects models are presented.

The main conclusions of in-sample forecasting accuracy are the following: (i) For each distribution,

there are quasi-score-driven models which provide more accurate volatility forecasts than the score-

driven model. This is indicated by bold numbers in Tables 3-A and 3-B. (ii) There are quasi-score-driven

models, which forecast more precisely than the classical A-PARCH, Gaussian-GARCH with leverage

effects, and t-GARCH with leverage effects models. This is indicated by using ∗∗ in Tables 3-A and

3-B for the best-performing model from all specifications, which is always a quasi-score-driven model.

Out-of-sample results—We use rolling windows for one-step ahead out-of-sample volatility forecast-

ing. The initial data window is for the period of 3 January 2000 to 31 December 2019 (5,031 trading

days). The forecasting window is for the period of 2 January 2020 to 14 December 2020 (241 trading

days). The selection of this forecasting window is motivated by the period of the coronavirus pandemic,

during which the volatility of the stock markets have significantly increased. In this paper, one of the

objectives is to study the forecasting precision of the quasi-score-driven models for crisis periods.

All models are estimated for the initial data window, and a one-step ahead volatility forecast is

estimated for each model for trading day that follows the data window. Then, the first observation

of the data window is excluded from the data window, and a new last observation is added to the

data window. All models are estimated for the new data window, and a new one-step ahead volatility

forecast is estimated for each model. This rolling-window procedure, for which the data window always

includes 5,031 observations, is repeated until the end of the forecasting window. Descriptive statistics

of yt for the out-of-sample forecasting window are presented in Table 1-D.

In Tables 4-A and 4-B, each panel presents the forecasting accuracy for a particular probability

distribution of the dependent variable. In each panel, the mean loss functions of the score-driven

model are presented in the first line, and the mean loss functions of the quasi-score-driven models are

presented in the remaining lines. In the last panel of Tables 4-A and 4-B, the mean loss functions of

the A-PARCH, Gaussian-GARCH with leverage effects, and t-GARCH with leverage effects models are

presented, which shows that the mean loss function estimate of A-PARCH is lower than the mean loss

function estimates of the Gaussian-GARCH with leverage effects, and t-GARCH with leverage effects.

To study the differences between the loss functions of quasi-score-driven and score-driven models,
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and the differences between the loss functions of quasi-score-driven and classical volatility models,

we use the Giacomini–White test. In each panel of score-driven models in Tables 4-A and 4-B, the

statistical significance of the Giacomini–White test statistic is added to those mean loss function es-

timates of quasi-score-driven models, which provide significantly more precise volatility forecasts than

the score-driven model. In addition, in the last panel of Tables 4-A and 4-B, the forecasting accuracy of

A-PARCH is compared with the forecasting accuracy of the best-performing quasi-score-driven model

(that quasi-score-driven model is indicated by bold mean loss function numbers).

The main conclusions of the out-of-sample analysis are the following: (i) For each probability distri-

bution, there are several quasi-score-driven models which provide significantly more accurate volatility

forecasts than the score-driven model. (ii) There are quasi-score-driven models, which forecast volatil-

ity significantly more precisely than the A-PARCH model. (iii) By comparing the superior forecasting

accuracy of the quasi-score-driven EGARCH model with the forecasting accuracies of the score-driven

EGARCH and classical volatility models, Tables 3 and 4 indicate that the superior forecasting perfor-

mance of quasi-score-driven EGARCH model is much clearer for the period of the coronavirus pandemic

than for the two-decade period of 2000 to 2020. The latter result supports the use of the quasi-score-

driven volatility models for volatility forecasting during crisis periods.

[APPROXIMATE LOCATION OF TABLES 3-4]

6 Conclusions

Score-driven models are among the most important contributions to the literature of time series econo-

metrics in the past decade, with more than 200 publications in academic journals until the date of this

paper. Quasi-score-driven models are recent extensions of score-driven models, which may improve the

statistical and forecasting performances of score-driven models. This issue has been the subject matter

of the present empirical study. In particular, we have compared the statistical and volatility forecast-

ing performances of quasi-score-driven, score-driven, and some classical dynamic volatility models. All

relevant probability distributions from the literature of score-driven models have been considered, i.e.

the Student’s t, GED, Gen-t, Skew-Gen-t, EGB2, NIG, and MXN distributions. We have used daily

log-return data for the S&P 500 index, which represents stock market returns in the US.

We have compared in-sample statistical and volatility forecasting performances for the period of

January 2000 to December 2020. We have compared the out-of-sample volatility forecasting perfor-

mances for the period of January 2020 to December 2020, which includes the period of the coronavirus

pandemic. The empirical results have supported that the quasi-score-driven volatility models, for all

probability distributions, are superior to the score-driven volatility models and the classical dynamic

volatility models. Our results motivate the practical use of the quasi-score-driven models for volatility

forecasting, especially for crisis periods such as the period of the coronavirus pandemic.
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Appendix

Student’s t-distribution—The conditional distribution of return yt is the non-standardized Student’s

t-distribution yt|(Ft−1,Θ) ∼ t[0, exp(λt), exp(δ1)], where the degrees of freedom is exp(δ1) (Harvey and

Chakravarty; Harvey 2013). The conditional volatility of yt is σt = exp(λt){exp(δ1)/[exp(δ1)− 2]}1/2.

The log conditional density of yt is

ln f(yt|Ft−1,Θ) = ln Γ

[
exp(δ1) + 1

2

]
− ln Γ

[
exp(δ1)

2

]
(A.1)

− ln[exp(δ1)π]

2
− λt −

exp(δ1) + 1

2
ln

{
1 +

ε2t
exp(δ1)

}
where εt = yt exp(−λt). The score function with respect to λt is:

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
=

[exp(δ1) + 1]ε2t
exp(δ1) + ε2t

− 1 (A.2)

GED—The conditional distribution of yt is the non-standardized GED distribution, denoted by

yt|(Ft−1,Θ) ∼ GED[0, exp(λt), exp(δ1)] (Harvey 2013). The conditional volatility of yt is

σt = exp(λt)2
exp(−δ1) ×

{
Γ[3 exp(−δ1)]

Γ[exp(−δ1)]

}1/2

(A.3)

The log conditional probability density of yt is

ln f(yt|Ft−1,Θ) = −[1 + exp(−δ1)] ln(2)− λt − ln Γ[1 + exp(−δ1)]− 1

2
|εt|exp(δ1) (A.4)

where εt = yt exp(−λt). The score function with respect to λt is

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
=

exp(δ1)

2
|εt|exp(δ1) − 1 (A.5)

Gen-t-distribution—The conditional distribution of yt is the non-standardized Get-t distribution

that is yt|(Ft−1,Θ) ∼ Gen−t[0, exp(λt), exp(δ1), exp(δ2)], where exp(λt) is the scale parameter, exp(δ1)

is the degrees of freedom, and exp(δ2) is the peakedness parameter (Harvey and Sucarrat 2014; Harvey

and Lange 2017). The conditional volatility of yt is:

σt = exp(λt)[exp(δ1)]exp(−δ2) ×

Γ
[

3
exp(δ2)

]
Γ
[

exp(δ1)−2
exp(δ2)

]
Γ
[

1
exp(δ2)

]
Γ
[

exp(δ1)
exp(δ2)

]


1/2

(A.6)

respectively. The log conditional density of yt is

ln f(yt|Ft−1,Θ) = δ2 − λt − ln(2)− δ1

exp(δ2)
− ln Γ

[
exp(δ1)

exp(δ2)

]
(A.7)
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− ln Γ

[
1

exp(δ2)

]
+ ln Γ

[
exp(δ1) + 1

exp(δ2)

]
− exp(δ1) + 1

exp(δ2)
ln

[
1 +
|εt|exp(δ2)

exp(δ1)

]
where εt = yt exp(−λt). The score function with respect to λt is

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
=
|εt|exp(δ2)[exp(δ1) + 1]

|εt|exp(δ2) + exp(δ1)
− 1 (A.8)

Skew-Gen-t distribution—The conditional distribution of the unexpected return is

yt|(Ft−1,Θ) ∼ Skew-Gen-t[0, exp(λt), tanh(δ1), exp(δ2), exp(δ3)] (A.9)

where exp(λt) is the scale parameter, tanh(δ1) is the skewness parameter, exp(δ2) is the degrees of

freedom parameter, and exp(δ3) is the shape parameter that sets the peakedness of the probability

distribution (Harvey and Sucarrat 2014; Harvey and Lange 2017). The conditional volatility of yt is

σt = exp(λt)[exp(δ2)]exp(−δ3)× (A.10)

×

 [3tanh2(δ1) + 1]B
[

3
exp(δ3) ,

exp(δ2)−2
exp(δ3)

]
B
[

1
exp(δ3) ,

exp(δ2)
exp(δ3)

] −
4tanh2(δ1)B2

[
2

exp(δ3) ,
exp(δ2)−1

exp(δ3)

]
B2
[

1
exp(δ3) ,

exp(δ2)
exp(δ3)

]


1/2

where B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function. The log conditional density of yt is

ln f(yt|Ft−1,Θ) = δ3 − λt − ln(2)− δ2

exp(δ3)
− ln Γ

[
exp(δ2)

exp(δ3)

]
(A.11)

− ln Γ

[
1

exp(δ3)

]
+ ln Γ

[
exp(δ2) + 1

exp(δ3)

]

−exp(δ2) + 1

exp(δ3)
ln

{
1 +

|εt|exp(δ3)

[1 + tanh(δ1)sgn(εt)]exp(δ3) × exp(δ2)

}
where εt = yt exp(−λt). The score function with respect to λt is

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
=

|εt|exp(δ3)[exp(δ2) + 1]

|εt|exp(δ3) + [1 + tanh(δ1)sgn(εt)]exp(δ3) exp(δ2)
− 1 (A.12)

EGB2 distribution—The conditional distribution of the unexpected return is

yt|(Ft−1,Θ) ∼ EGB2[0, exp(−λt), exp(δ1), exp(δ2)] (A.13)

where exp(λt) is the scale parameter, and exp(δ1) and exp(δ2) are two shape parameters (Caivano and

Harvey 2014). The conditional volatility of yt is σt = exp(λt){Ψ(1)[exp(δ1)] + Ψ(1)[exp(δ2)]}1/2, where

11



Ψ(j)(·) is the polygamma function of order j. The log conditional density of yt is

ln f(yt|Ft−1,Θ) = exp(δ1)εt − λt − ln Γ[exp(δ1)]− ln Γ[exp(δ2)] (A.14)

+ ln Γ[exp(δ1) + exp(δ2)]− [exp(δ1) + exp(δ2)] ln[1 + exp(εt)]

where εt = yt exp(−λt). The score function with respect to λt is

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
= [exp(δ1) + exp(δ2)]

εt exp(εt)

exp(εt) + 1
− exp(δ1)εt − 1 (A.15)

NIG distribution—The conditional distribution of the unexpected return yt is

yt|(Ft−1,Θ) ∼ NIG[0, exp(λt), exp(δ1 − λt), exp(δ1 − λt)tanh(δ2)] (A.16)

where exp(λt) is the scale parameter, and exp(δ1) and exp(δ2) are two shape parameters (Blazsek, Ho,

and Liu 2018). The conditional volatility of yt is

σt =
exp[(λt − δ1)/2]

[1− tanh2(δ2)]3/4
(A.17)

The log conditional density of yt is

ln f(yt|Ft−1,Θ) = δ1 − λt − ln(π) + exp(δ1)[1− tanh2(δ2)]1/2 (A.18)

+ exp(δ1)tanh(δ2)εt + lnK(1)

[
exp(δ1)

√
1 + ε2t

]
− 1

2
ln(1 + ε2t )

where K(j)(·) is the modified Bessel function of the second kind of order j, and εt = yt exp(−λt). The

score function with respect to λt is

ut =
∂ ln f(yt|Ft−1,Θ)

∂λt
= −1− exp(δ1)tanh(δ2)εt +

ε2t
1 + ε2t

(A.19)

+
exp(δ1)ε2t√

1 + ε2t
×
K(0)

[
exp(δ1)

√
1 + ε2t

]
+K(2)

[
exp(δ1)

√
1 + ε2t

]
2K(1)

[
exp(δ1)

√
1 + ε2t

]
MXN distribution—The conditional distribution of the unexpected return yt is

εt ∼ MXN[0, 1, πtanh(δ1), exp(δ2)] (A.20)

where δ1 and δ2 are shape parameters (Blazsek and Haddad 2020). The conditional volatility of yt is

σt =

{
exp(λt + δ2)

cos[πtanh(δ1)] + 1

}1/2

(A.21)
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The log conditional density of yt is

ln f(yt|Ft−1,Θ) = −λt + 2 exp(δ2) ln {2cos[πtanh(δ1)/2]} − ln(2π) (A.22)

− ln Γ{2 exp(δ2)}+ πtanh(δ1)
yt − µt
exp(λt)

+ 2 ln

∣∣∣∣Γ [exp(δ2) + i
yt − µt
exp(λt)

]∣∣∣∣
where εt = (yt − µt) exp(−λt), cos(·) is the cosine function, tanh(·) is the hyperbolic tangent func-

tion, and i is the imaginary unit. We define g(λt) = Γ[exp(δ2) + i(yt − µt) exp(−λt)], for which

∂ ln |g(λt)|/∂λt = Re[g′(λt)/g(λt)], where λt ∈ IR and Re(·) is the real part of a complex number. Since

Γ′(·) = Γ(·)Ψ(0)(·), the score function with respect to λt is:

∂ ln f(yt|Ft−1,Θ)

∂λt
= ut = 2Re

{
−iεtΨ(0)[exp(δ2) + iεt]

}
− πtanh(δ1)εt − 1 (A.23)
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Table 1: Descriptive statistics of daily S&P 500 returns (% points).

A. Descriptive statistics (full sample window) Log-return ỹt Absolute log-return |ỹt|
Start date 3 January 2000 3 January 2000

End date 14 December 2020 14 December 2020

Sample size T 5, 272 5, 272

Minimum −12.7652 0.0000

Maximum 10.9572 12.7652

Average 0.0172 0.8189

Standard deviation 1.2564 0.9529

Skewness −0.3922 3.5094

Excess kurtosis 10.9341 21.9943

Corr(ỹt, ỹt−1) −0.1130

Corr(|ỹt|, |ỹt−1|) 0.3079

Corr(ỹt, |ỹt−1|) 0.0257

Corr(|ỹt|, ỹt−1) −0.1320

B. BIC for different ARMA(p,q) specifications of ỹt (full sample window)

AR(1) 17313.2521

AR(2) 17307.6162

AR(3) 17312.9131

ARMA(1,1) 17328.4848

ARMA(2,1) 17324.7317

ARMA(3,1) 17343.5343

C. Descriptive statistics of AR(2) residuals (full sample window) Unexpected return yt Absolute unexpected return |yt|
Start date 3 January 2000 3 January 2000

End date 14 December 2020 14 December 2020

Sample size T 5, 272 5, 272

Minimum −11.9269 0.0000

Maximum 10.6691 11.9269

Average 0.0000 0.8153

Standard deviation 1.2468 0.9433

Skewness −0.5395 3.4279

Excess kurtosis 10.3337 20.8033

Corr(yt, yt−1) 0.0001

Corr(|yt|, |yt−1|) 0.2951

Corr(yt, |yt−1|) 0.0229

Corr(|yt|, yt−1) −0.1311

D. Descriptive statistics (forecasting window) Unexpected return yt Absolute unexpected return |yt|
Start date 2 January 2020 2 January 2020

End date 14 December 2020 14 December 2020

Number of forecasts Tf 241 241

Minimum −11.9269 0.0152

Maximum 8.5315 11.9269

Average 0.0335 1.3638

Standard deviation 2.1736 1.6906

Skewness −1.0347 3.0557

Excess kurtosis 7.8706 12.1340

Bayesian information criterion (BIC); correlation coefficient (corr). The daily closing value of the Standard & Poor’s 500 (S&P 500)

index st is observed. Log-return is defined by ỹt = ln(st/st) for t = 1, . . . , T where s0 is given by pre-sample data. The following

ARMA(p, q) models for p = 1, 2, 3 and q = 0, 1 are estimated: ỹt = c +
∑p

i=1 φiỹt−j +
∑q

j=0 θjvt−j + yt. Lag-order selection is

done by using the specific to general procedure. The bold BIC number indicates the best-performing ARMA specification. In all

volatility modes of this paper, yt is used as a dependent variable.
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Table 2-A: In-sample statistical performance for the period of 3 January 2000 to 14 December 2020.

Model Distribution LL AIC BIC HQC

Score t −1.3385 2.6792 2.6867 2.6818

Quasi-score t −1.3384 2.6794 2.6882 2.6825

Quasi-score GED −1.3355 2.6737 2.6825 2.6768

Quasi-score Gen-t −1.3355 2.6741 2.6841 2.6776

Quasi-score Skew-Gen-t −1.3355 2.6745 2.6857 2.6784

Quasi-score EGB2 −1.3332∗ 2.6694∗ 2.6794∗∗ 2.6729∗∗

Quasi-score NIG −1.3365 2.6760 2.6859 2.6795

Quasi-score MXN −1.3350 2.6730 2.6830 2.6765

Model Distribution LL AIC BIC HQC

Score GED −1.3448 2.6920 2.6994 2.6946

Quasi-score t −1.3404 2.6834 2.6921 2.6864

Quasi-score GED −1.3446 2.6920 2.7007 2.6950

Quasi-score Gen-t −1.3374∗ 2.6779∗ 2.6878∗ 2.6814∗

Quasi-score Skew-Gen-t −1.3374 2.6782 2.6895 2.6822

Quasi-score EGB2 −1.3435 2.6900 2.7000 2.6935

Quasi-score NIG −1.3462 2.6955 2.7055 2.6990

Quasi-score MXN −1.3447 2.6925 2.7025 2.6960

Model Distribution LL AIC BIC HQC

Score Gen-t −1.3376 2.6779 2.6866 2.6809

Quasi-score t −1.3381 2.6793 2.6892 2.6827

Quasi-score GED −1.3353 2.6736 2.6836 2.6771

Quasi-score Gen-t −1.3353 2.6740 2.6852 2.6779

Quasi-score Skew-Gen-t −1.3353 2.6744 2.6868 2.6787

Quasi-score EGB2 −1.3329∗∗ 2.6692∗∗ 2.6804∗ 2.6731∗

Quasi-score NIG −1.3363 2.6759 2.6871 2.6798

Quasi-score MXN −1.3347 2.6728 2.6840 2.6767

Model Distribution LL AIC BIC HQC

Score Skew-Gen-t −1.3377 2.6785 2.6885 2.6820

Quasi-score t −1.3379 2.6793 2.6905 2.6832

Quasi-score GED −1.3367 2.6768 2.6880 2.6807

Quasi-score Gen-t −1.3351 2.6740 2.6865 2.6784

Quasi-score Skew-Gen-t −1.3367 2.6775 2.6913 2.6823

Quasi-score EGB2 −1.3341∗ 2.6721∗ 2.6845∗ 2.6764∗

Quasi-score NIG −1.3374 2.6786 2.6911 2.6829

Quasi-score MXN −1.3359 2.6756 2.6881 2.6800

Classical model LL AIC BIC HQC

A-PARCH −1.3545 2.7114 2.7188 2.7140

G-GARCH −1.3598 2.7215 2.7277 2.7236

t-GARCH −1.3385∗ 2.6793∗ 2.6868∗ 2.6820∗

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). In each panel, bold numbers indicate that the likelihood-based performance of a quasi-score-driven model is superior to the

likelihood-based performance of the score-driven model. In each panel, ∗ indicates the best-performing specification. In this table,
∗∗ indicates the best-performing specification from Tables 2-A and 2-B. The parameter estimates and the computer codes for all

models are available from the authors upon request.
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Table 2-B: In-sample statistical performance for the period of 3 January 2000 to 14 December 2020.

Model Distribution LL AIC BIC HQC

Score EGB2 −1.3391 2.6808 2.6895 2.6839

Quasi-score t −1.3392 2.6815 2.6915 2.6850

Quasi-score GED −1.3363 2.6757 2.6856 2.6791

Quasi-score Gen-t −1.3363 2.6760 2.6872 2.6800

Quasi-score Skew-Gen-t −1.3363 2.6764 2.6889 2.6808

Quasi-score EGB2 −1.3347 2.6729 2.6841 2.6768

Quasi-score NIG −1.3369 2.6772 2.6885 2.6812

Quasi-score MXN −1.3336∗ 2.6705∗ 2.6817∗ 2.6744∗

Model Distribution LL AIC BIC HQC

Score NIG −1.3449 2.6924 2.7011 2.6954

Quasi-score t −1.3390 2.6811 2.6911 2.6846

Quasi-score GED −1.3410 2.6850 2.6949 2.6884

Quasi-score Gen-t −1.3361∗ 2.6757∗ 2.6869∗ 2.6796∗

Quasi-score Skew-Gen-t −1.3410 2.6857 2.6982 2.6901

Quasi-score EGB2 −1.3370 2.6774 2.6886 2.6814

Quasi-score NIG −1.3393 2.6819 2.6932 2.6859

Quasi-score MXN −1.3399 2.6831 2.6943 2.6871

Model Distribution LL AIC BIC HQC

Score MXN −1.3445 2.6917 2.7004 2.6947

Quasi-score t −1.3394 2.6817 2.6917 2.6852

Quasi-score GED −1.3420 2.6871 2.6971 2.6906

Quasi-score Gen-t −1.3364∗ 2.6763∗ 2.6875∗ 2.6802∗

Quasi-score Skew-Gen-t −1.3364 2.6767 2.6892 2.6810

Quasi-score EGB2 −1.3376 2.6786 2.6898 2.6825

Quasi-score NIG −1.3391 2.6816 2.6928 2.6855

Quasi-score MXN −1.3372 2.6777 2.6889 2.6816

Classical model LL AIC BIC HQC

A-PARCH −1.3545 2.7114 2.7188 2.7140

G-GARCH −1.3598 2.7215 2.7277 2.7236

t-GARCH −1.3385∗ 2.6793∗ 2.6868∗ 2.6820∗

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). In each panel, bold numbers indicate that the likelihood-based performance of a quasi-score-driven model is superior to the

likelihood-based performance of the score-driven model. In each panel, ∗ indicates the best-performing specification. The parameter

estimates and the computer codes for all models are available from the authors upon request.

17



Table 3-A: In-sample volatility forecasting performance for the period of 1 February 2000 to 14 December 2020.

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score t 0.1689 3.1554 0.2829 0.7486 0.3079 0.7582

Quasi-score t 0.1678 3.0929 0.2828 0.7451 0.3075 0.7550

Quasi-score GED 0.1664 2.9869 0.2805 0.7342 0.3061 0.7497

Quasi-score Gen-t 0.1665 2.9870 0.2805 0.7342 0.3061 0.7497

Quasi-score Skew-Gen-t 0.1665 2.9871 0.2805 0.7342 0.3062 0.7497

Quasi-score EGB2 0.1670 3.0420 0.2742∗ 0.7191∗ 0.3046∗ 0.7548

Quasi-score NIG 0.1659 2.9842 0.2820 0.7396 0.3062 0.7479

Quasi-score MXN 0.1659∗ 2.9688∗ 0.2785 0.7302 0.3048 0.7467∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score GED 0.1727 3.1485 0.2864 0.7807 0.3105 0.7589

Quasi-score t 0.1589 2.9221 0.2778 0.7363 0.3001 0.7245

Quasi-score GED 0.1715 3.1203 0.2848 0.7725 0.3104 0.7597

Quasi-score Gen-t 0.1589 2.8478 0.2760∗ 0.7255 0.3000 0.7237

Quasi-score Skew-Gen-t 0.1589∗∗ 2.8476∗∗ 0.2760 0.7255∗ 0.3000∗ 0.7237∗∗

Quasi-score EGB2 0.1776 3.1459 0.2846 0.7646 0.3179 0.7906

Quasi-score NIG 0.1694 3.0363 0.2821 0.7580 0.3103 0.7594

Quasi-score MXN 0.1770 3.1888 0.2870 0.7735 0.3173 0.7851

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score Gen-t 0.1660 3.1151 0.2801 0.7435 0.3048 0.7481

Quasi-score t 0.1653 3.0493 0.2810 0.7403 0.3052 0.7468

Quasi-score GED 0.1644 2.9518 0.2790 0.7300 0.3043 0.7428

Quasi-score Gen-t 0.1644 2.9517 0.2790 0.7300 0.3042 0.7428

Quasi-score Skew-Gen-t 0.1644 2.9518 0.2790 0.7300 0.3043 0.7428

Quasi-score EGB2 0.1647 2.9942 0.2728∗ 0.7150∗ 0.3026∗ 0.7473

Quasi-score NIG 0.1637 2.9569 0.2800 0.7345 0.3039 0.7404

Quasi-score MXN 0.1636∗ 2.9303∗ 0.2769 0.7256 0.3027 0.7391∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score Skew-Gen-t 0.1654 3.1256 0.2796 0.7438 0.3037 0.7447

Quasi-score t 0.1641 3.0299 0.2801 0.7372 0.3040 0.7430

Quasi-score GED 0.1716 3.0736 0.2849 0.7540 0.3120 0.7678

Quasi-score Gen-t 0.1633∗ 2.9359∗ 0.2781∗ 0.7269∗ 0.3031∗ 0.7391∗

Quasi-score Skew-Gen-t 0.1709 3.0578 0.2850 0.7537 0.3115 0.7652

Quasi-score EGB2 0.1726 3.1269 0.2788 0.7368 0.3107 0.7738

Quasi-score NIG 0.1715 3.0663 0.2864 0.7583 0.3125 0.7673

Quasi-score MXN 0.1711 3.0336 0.2830 0.7482 0.3109 0.7651

Classical model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

A-PARCH 0.1649∗ 3.4271∗ 0.2730∗ 0.7216∗ 0.2982∗ 0.7425∗

G-GARCH 0.1847 4.4292 0.2780 0.7540 0.3036 0.7878

t-GARCH 0.2061 5.3026 0.2812 0.7568 0.3147 0.8486

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH). In each panel, bold numbers indicate that the forecasting performance of a quasi-score-driven model is superior to the

forecasting performance of the score-driven model. In each panel, ∗ indicates the best-performing specification. Moreover, ∗∗

indicates the best-performing specification from Tables 3-A and 3-B. For the in-sample volatility forecasting performance evaluation,

the first month of the full sample period (i.e. 20 observations) is excluded, in order to reduce the effects of the initialization on the

volatility estimates. The parameter estimates and the computer codes for all models are available from the authors upon request.
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Table 3-B: In-sample volatility forecasting performance for the period of 1 February 2000 to 14 December 2020.

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score EGB2 0.1639 3.0140 0.2803 0.7460 0.3035 0.7384

Quasi-score t 0.1629 3.0042 0.2794 0.7360 0.3029 0.7385

Quasi-score GED 0.1624 2.9197 0.2774 0.7257 0.3023 0.7359

Quasi-score Gen-t 0.1624 2.9198 0.2774 0.7257 0.3023 0.7360

Quasi-score Skew-Gen-t 0.1624 2.9206 0.2775 0.7260 0.3024 0.7359

Quasi-score EGB2 0.1596∗ 2.9011 0.2709∗∗ 0.7054∗∗ 0.2977∗∗ 0.7287∗

Quasi-score NIG 0.1627 2.8990∗ 0.2817 0.7362 0.3037 0.7353

Quasi-score MXN 0.1629 2.9386 0.2717 0.7137 0.3010 0.7402

Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score NIG 0.1778 3.2854 0.2889 0.7771 0.3175 0.7873

Quasi-score t 0.1641 3.0253 0.2803 0.7389 0.3042 0.7428

Quasi-score GED 0.1725 3.1348 0.2850 0.7646 0.3120 0.7681

Quasi-score Gen-t 0.1634∗ 2.9355∗ 0.2783∗ 0.7284∗ 0.3034∗ 0.7396∗

Quasi-score Skew-Gen-t 0.1725 3.1354 0.2850 0.7646 0.3120 0.7682

Quasi-score EGB2 0.1731 3.0912 0.2788 0.7432 0.3113 0.7741

Quasi-score NIG 0.1767 3.1065 0.2858 0.7608 0.3170 0.7870

Quasi-score MXN 0.1743 3.1886 0.2832 0.7556 0.3134 0.7785

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score MXN 0.1755 3.2079 0.2878 0.7761 0.3153 0.7777

Quasi-score t 0.1626 2.9962 0.2793 0.7368 0.3028 0.7375

Quasi-score GED 0.1714 3.1192 0.2841 0.7636 0.3106 0.7633

Quasi-score Gen-t 0.1621∗ 2.9117 0.2774 0.7264∗ 0.3023∗ 0.7351∗

Quasi-score Skew-Gen-t 0.1621 2.9117∗ 0.2774 0.7265 0.3023 0.7351

Quasi-score EGB2 0.1721 3.0468 0.2795 0.7479 0.3105 0.7682

Quasi-score NIG 0.1811 3.2181 0.2854 0.7656 0.3202 0.8019

Quasi-score MXN 0.1660 2.9647 0.2744∗ 0.7284 0.3040 0.7487

Classical model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

A-PARCH 0.1649∗ 3.4271∗ 0.2730∗ 0.7216∗ 0.2982∗ 0.7425∗

G-GARCH 0.1847 4.4292 0.2780 0.7540 0.3036 0.7878

t-GARCH 0.2061 5.3026 0.2812 0.7568 0.3147 0.8486

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH). In each panel, bold numbers indicate that the forecasting performance of a quasi-score-driven model is superior to the

forecasting performance of the score-driven model. In each panel, ∗ indicates the best-performing specification. Moreover, ∗∗

indicates the best-performing specification from Tables 3-A and 3-B. For the in-sample volatility forecasting performance evaluation,

the first month of the full sample period (i.e. 20 observations) is excluded, in order to reduce the effects of the initialization on the

volatility estimates. The parameter estimates and the computer codes for all models are available from the authors upon request.
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Table 4-A: Out-of-sample volatility forecasting performance for the period of 2 January 2020 to 14 December 2020.

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score t 0.4791 19.8737 0.4020 0.8723 0.4999 2.0355

Quasi-score t 0.4524∗∗∗ 18.1662∗∗ 0.4019 0.8429∗∗∗ 0.4852∗∗∗ 1.9437∗∗∗

Quasi-score GED 0.4628 17.5558 0.3854 0.8374∗∗ 0.4849∗∗ 1.9411+

Quasi-score Gen-t 0.4630 17.5635 0.3857 0.8377∗∗ 0.4850∗∗ 1.9417+

Quasi-score Skew-Gen-t 0.4561 17.5483 0.3959 0.8183∗∗∗ 0.4763∗∗∗ 1.9144∗

Quasi-score EGB2 0.4462∗∗ 17.9275 0.3417∗∗ 0.7633∗∗∗ 0.4701∗∗∗ 1.9321∗

Quasi-score NIG 0.4526∗ 17.1190+ 0.3992 0.8413∗ 0.4823∗∗ 1.9167∗∗

Quasi-score MXN 0.4638 17.1635 0.3781+ 0.8414+ 0.4876+ 1.9401+

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score GED 0.5307 17.7700 0.4101 1.0283 0.5521 2.1443

Quasi-score t 0.4090∗∗∗ 16.1257∗∗ 0.3795 0.8152∗∗∗ 0.4655∗∗∗ 1.8140∗∗∗

Quasi-score GED 0.4175∗∗∗ 15.6183∗∗∗ 0.3672∗∗ 0.8024∗∗∗ 0.4637∗∗∗ 1.8104∗∗∗

Quasi-score Gen-t 0.4175∗∗∗ 15.6187∗∗∗ 0.3673∗∗ 0.8019∗∗∗ 0.4636∗∗∗ 1.8103∗∗∗

Quasi-score Skew-Gen-t 0.4175∗∗∗ 15.6180∗∗∗ 0.3673∗∗ 0.8018∗∗∗ 0.4636∗∗∗ 1.8102∗∗∗

Quasi-score EGB2 0.4045∗∗∗ 15.9314∗∗ 0.3331∗∗∗ 0.7370∗∗∗ 0.4501∗∗∗ 1.8008∗∗∗

Quasi-score NIG 0.4163∗∗∗ 15.4125∗∗∗ 0.3783 0.8247∗∗∗ 0.4669∗∗∗ 1.8057∗∗∗

Quasi-score MXN 0.4200∗∗∗ 15.3590∗∗∗ 0.3637∗∗∗ 0.8187∗∗∗ 0.4684∗∗∗ 1.8191∗∗∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score Gen-t 0.4776 19.4142 0.3918 0.8795 0.5003 2.0303

Quasi-score t 0.4367∗∗∗ 17.4327∗∗∗ 0.3949 0.8322∗∗∗ 0.4781∗∗∗ 1.8982∗∗∗

Quasi-score GED 0.4459∗∗ 16.8155+ 0.3795∗ 0.8242∗∗∗ 0.4771∗∗∗ 1.8931∗∗∗

Quasi-score Gen-t 0.4459∗∗ 16.8150+ 0.3795∗ 0.8242∗∗∗ 0.4771∗∗∗ 1.8931∗∗∗

Quasi-score Skew-Gen-t 0.4393∗∗∗ 17.0183+ 0.3913 0.8056∗∗∗ 0.4690∗∗∗ 1.8750∗∗∗

Quasi-score EGB2 0.4310∗∗∗ 17.1984+ 0.3360∗∗ 0.7506∗∗∗ 0.4627∗∗∗ 1.8863∗∗∗

Quasi-score NIG 0.4451∗∗∗ 16.7554∗ 0.3852 0.8371∗∗∗ 0.4808∗∗∗ 1.8983∗∗∗

Quasi-score MXN 0.4436∗∗ 16.3118∗ 0.3702∗∗∗ 0.8236∗∗∗ 0.4777∗∗∗ 1.8818∗∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score Skew-Gen-t 0.4815 19.2428 0.3906 0.8945 0.5042 2.0356

Quasi-score t 0.4314∗∗∗ 17.1342∗∗∗ 0.3932 0.8277∗∗∗ 0.4754∗∗∗ 1.8805∗∗∗

Quasi-score GED 0.4403∗∗∗ 16.5352∗ 0.3785+ 0.8215∗∗∗ 0.4746∗∗∗ 1.8748∗∗∗

Quasi-score Gen-t 0.4401∗∗∗ 16.5339∗ 0.3777+ 0.8190∗∗∗ 0.4741∗∗∗ 1.8742∗∗∗

Quasi-score Skew-Gen-t 0.4403∗∗∗ 16.5575∗ 0.3780+ 0.8196∗∗∗ 0.4744∗∗∗ 1.8755∗∗∗

Quasi-score EGB2 0.4257∗∗∗ 16.9171∗ 0.3347∗∗∗ 0.7465∗∗∗ 0.4599∗∗∗ 1.8682∗∗∗

Quasi-score NIG 0.4492+ 15.3946 0.3944 0.8669∗ 0.4827∗ 1.8591+

Quasi-score MXN 0.4388∗∗∗ 16.0529∗ 0.3699∗∗∗ 0.8218∗∗∗ 0.4757∗∗∗ 1.8661∗∗∗

Classical model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

A-PARCH 0.5289∗∗∗ 21.9698∗∗ 0.3624+ 0.8239∗∗∗ 0.4906∗∗∗ 2.0600∗∗∗

G-GARCH 0.8290 42.8140 0.4243 1.0947 0.6302 2.9394

t-GARCH 0.9598 51.1076 0.4528 1.1684 0.6728 3.2296

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH). ∗∗∗, ∗∗, ∗, and + indicate that the Giacomini–White test statistic is significant at the 1%, 5%, 10%, and 15% levels,

respectively. In each panel of score-driven models, the Giacomini–White test compares the volatility forecasting performances of the

score-driven model with all quasi-score-driven models. Bold numbers indicate the lowest loss function value from Tables 4-A and

4-B. In the panel of classical models, the Giacomini-White test compares the volatility forecasting performances of the A-PARCH

model with the best-performing quasi-score-driven model (i.e. bold numbers). The computer codes for all models are available from

the authors upon request.
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Table 4-B: Out-of-sample volatility forecasting performance for the period of 2 January 2020 to 14 December 2020.

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score EGB2 0.4788 17.9402 0.3943 0.9200 0.5114 2.0190

Quasi-score t 0.4323∗∗∗ 17.2569∗ 0.3932 0.8275∗∗∗ 0.4757∗∗∗ 1.8854∗∗∗

Quasi-score GED 0.4434∗∗∗ 16.7710 0.3789 0.8198∗∗∗ 0.4755∗∗∗ 1.8874∗∗∗

Quasi-score Gen-t 0.4434∗∗∗ 16.7692 0.3789 0.8198∗∗∗ 0.4755∗∗∗ 1.8874∗∗∗

Quasi-score Skew-Gen-t 0.4434∗∗∗ 16.7691 0.3789 0.8198∗∗∗ 0.4755∗∗∗ 1.8873∗∗∗

Quasi-score EGB2 0.4246∗∗∗ 16.7923 0.3508∗∗∗ 0.7566∗∗∗ 0.4596∗∗∗ 1.8569∗∗∗

Quasi-score NIG 0.4374∗∗∗ 16.3898 0.3935 0.8232∗∗∗ 0.4730∗∗∗ 1.8630∗∗∗

Quasi-score MXN 0.4337∗∗∗ 16.8771 0.3244∗∗ 0.7537∗∗∗ 0.4664∗∗∗ 1.8931∗∗∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score NIG 0.4748 18.3059 0.3924 0.9016 0.5048 2.0089

Quasi-score t 0.4354∗∗∗ 17.3918∗∗∗ 0.3948 0.8304∗∗∗ 0.4773∗∗∗ 1.8945∗∗∗

Quasi-score GED 0.4461∗∗∗ 16.8707 0.3801+ 0.8236∗∗∗ 0.4772∗∗∗ 1.8951∗∗∗

Quasi-score Gen-t 0.4461∗∗∗ 16.8711 0.3801+ 0.8237∗∗∗ 0.4772∗∗∗ 1.8952∗∗∗

Quasi-score Skew-Gen-t 0.4396∗∗∗ 16.9380 0.3908 0.8051∗∗∗ 0.4689∗∗∗ 1.8724∗∗∗

Quasi-score EGB2 0.4408∗∗ 17.1194 0.3230∗ 0.7594∗∗∗ 0.4700∗∗∗ 1.9135∗∗

Quasi-score NIG 0.4423∗∗∗ 17.0532∗∗∗ 0.3822∗∗ 0.8474∗∗∗ 0.4832∗∗∗ 1.9113∗∗∗

Quasi-score MXN 0.4445∗ 16.6519 0.3193∗ 0.7706∗∗∗ 0.4740∗∗∗ 1.9121∗

Model Distribution MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

Score MXN 0.4838 17.9445 0.3960 0.9316 0.5161 2.0345

Quasi-score t 0.4285∗∗∗ 17.0795∗ 0.3911 0.8257∗∗∗ 0.4741∗∗∗ 1.8743∗∗∗

Quasi-score GED 0.4390∗∗∗ 16.5766+ 0.3773+ 0.8182∗∗∗ 0.4738∗∗∗ 1.8751∗∗∗

Quasi-score Gen-t 0.4389∗∗∗ 16.5739+ 0.3769∗ 0.8171∗∗∗ 0.4736∗∗∗ 1.8749∗∗∗

Quasi-score Skew-Gen-t 0.4352∗∗∗ 16.3581 0.3912 0.8179∗∗∗ 0.4717∗∗∗ 1.8584∗∗∗

Quasi-score EGB2 0.4284∗∗∗ 16.4459 0.3176∗∗ 0.7473∗∗∗ 0.4632∗∗∗ 1.8705∗∗∗

Quasi-score NIG 0.4129∗∗∗ 15.4800 0.3493∗∗∗ 0.7574∗∗∗ 0.4521∗∗∗ 1.7959∗∗

Quasi-score MXN 0.4282∗∗∗ 16.7733 0.3258∗∗∗ 0.7470∗∗∗ 0.4627∗∗∗ 1.8780∗∗∗

Classical model MSE1 MSE2 QLIKE R2LOG MAE1 MAE2

A-PARCH 0.5289∗∗∗ 21.9698∗∗ 0.3624+ 0.8239∗∗∗ 0.4906∗∗∗ 2.0600∗∗∗

G-GARCH 0.8290 42.8140 0.4243 1.0947 0.6302 2.9394

t-GARCH 0.9598 51.1076 0.4528 1.1684 0.6728 3.2296

Student’s t-distribution (t); general error distribution (GED); generalized t-distribution (Gen-t); skewed generalized t-distribution

(Skew-Gen-t); exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution;

Meixner distribution (MXN); asymmetric power autoregressive conditional heteroscedasticity (A-PARCH); Gaussian-GARCH (G-

GARCH). ∗∗∗, ∗∗, ∗, and + indicate that the Giacomini–White test statistic is significant at the 1%, 5%, 10%, and 15% levels,

respectively. In each panel of score-driven models, the Giacomini–White test compares the volatility forecasting performances of the

score-driven model with all quasi-score-driven models. Bold numbers indicate the lowest loss function value from Tables 4-A and

4-B. In the panel of classical models, the Giacomini-White test compares the volatility forecasting performances of the A-PARCH

model with the best-performing quasi-score-driven model (i.e. bold numbers). The computer codes for all models are available from

the authors upon request.
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A. ut for Student’s t B. ut for GED

C. ut for Gen-t D. ut for Skew-Gen-t

E. ut for EGB2 F. ut for NIG

G. ut for MXN

Figure 1: Score function ut as a function of εt for the period of 3 January 2000 to 14 December 2020. Notes: We use the parameter

estimates for the score-driven models. For the x-axis we use εt ∈ (−250, 250), to indicate the asymptotic behaviour of ut.
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A. Log-return of the S&P 500 ỹt (source of data: Yahoo Finance)

B. Unexpected log-return of the S&P 500 yt, i.e. residuals of an AR(2) model for yt

C. Realized volatility of the S&P 500 (source of data: Oxford-Man Institute of Quantitative Finance)

Figure 2: Log-return, unexpected return, and realized volatility for the period of 3 January 2000 to 14 December 2020.
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