
Discussion Paper 2/2022
Guatemalan Econometric Study Group
Universidad Francisco Marroqúın
March 11, 2022

Szabolcs Blazsek∗ and Richard Bowen

Score-driven cryptocurrency and equity portfolios

Abstract:

Motivated by the recent start of BITO which replicates Bitcoin, we study whether BITO can improve

equity portfolios. Investors may prefer BITO to Bitcoin because: (i) BITO is traded on a regulated

market, while cryptocurrency exchanges are largely unregulated; (ii) the fee for BITO is lower than the

fees at cryptocurrency exchanges. For the first time in the literature, we use score-driven models to
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For the equity component we use VOO to replicate the Standard & Poor’s 500 (S&P 500) index. The full
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1 Introduction

On October 19, 2021, the trading of the first Bitcoin exchange traded fund (ETF) (ticker: BITO) began

at New York Stock Exchange (NYSE) Arca. Although Bitcoin was invented in 2008 and its trading

started shortly after, due to its largely unregulated cryptocurrency markets, it took several years for

the Securities and Exchange Commission (SEC) to approve an ETF that replicates the price of Bitcoin.

Compared to investing in Bitcoin, one of the advantages of investing in BITO is its significantly lower

transaction fee. For example, on the Coinbase cryptocurrency exchange platform, opening a position in

Bitcoin with a value under $10,000 has a fee of 0.5% of the position value. The fees are also significant

at other cryptocurrency exchanges (e.g. Binance, PrimeXBT, crypto.com, among others). On the other

hand, for BITO, the trading fee is represented by the 0.95% annual expense ratio of the ETF, which

is significantly lower than the fees of cryptocurrency exchanges. This may motivate many investors to

choose BITO instead of Bitcoin for cryptocurrency investments. Moreover, many equity investors who

have not included cryptocurrencies in equity portfolios yet, may include BITO in their portfolios in

the future by trading on regulated markets and using the same trading platforms.

We study whether cryptocurrencies improve equity portfolios. We consider the following cryptocur-

rencies: Bitcoin (BTC-USD), Ethereum (ETH-USD), Ripple (XRPUSD), Binance Coin (BNBUSD),

Cardano (ADA-USD), Solana (SOL-USD), Litecoin (LTC-USD), Dash (DASH-USD), and Monero

(XMR-USD). We focus on Bitcoin because the other cryptocurrencies in the list either have sample

periods that are too short for out-of-sample portfolio performance evaluation, or they are not among

the most important 10 cryptocurrencies according to market capitalization at the date of this paper.

Our objective is to perform a portfolio performance study for investors who consider adding BITO

to equity portfolios. Since for BITO only a very short time series is available currently, we decided to

use data on Bitcoin prices (which are replicated by BITO since October 2021), and we subtract from

Bitcoin returns the annual expense ratio of BITO. In this way, we get a longer time series representing

BITO performance for the period of September 18, 2014 to January 22, 2022.

For the equity component of the portfolio, we use the Vanguard S&P 500 ETF (ticker: VOO),

which replicates the Standard & Poor’s 500 (S&P 500) index. For VOO, the available observation

period is from September 10, 2010 to January 21, 2022. For the VOO return calculation, we subtract

from VOO returns the 0.03% annual expense ratio of the ETF. We splice the Bitcoin and VOO series,
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hence the full sample period in this paper is from September 18, 2014 to January 21, 2022. We note

that VOO is traded from Monday to Friday, while Bitcoin is traded seven days a week. For the spliced

dataset, we use the opening prices from Monday to Friday for both ETFs.

The main contribution of this paper is that for the optimization of VOO-Bitcoin portfolios we use

score-driven models, which to our knowledge has never been considered in the literature. Score-driven

models are introduced in the works of Creal, Koopman, and Lucas (2008, 2011, 2013), Harvey and

Chakravarty (2008), and Harvey (2013). Creal, Koopman, and Lucas (2013) and Harvey (2013) name

those models generalized autoregressive score (GAS) and dynamic conditional score (DCS) models, re-

spectively. Those models are observation-driven models (Cox 1981), for which the dynamic parameters

are updated by the scaled partial derivatives of the log conditional density of the dependent variables

with respect to dynamic parameters (hereinafter, the updating terms are named scaled score functions).

Some of the advantages of the score-driven models over the classical observation-driven models

are: (i) Score-driven models are robust to outliers and missing data (Harvey 2013). (ii) Several score-

driven models are generalizations of classical observation-driven models (Creal, Koopman, and Lucas

2013; Harvey 2013). (iii) Blasques, Koopman, and Lucas (2015) show that a score-driven update locally

reduces the Kullback–Leibler divergence in expectation at every step, and only the score-driven updates

have this property. These advantages may motivate the use of score-driven models for the estimation of

portfolio mean and volatility. In relation to this, we refer to the works of Atskanov (2016) and Bernardi

and Catania (2018), which use score-driven models for the optimization of equity portfolios (i.e. those

authors do not consider cryptocurrencies in the portfolios).

In the literature on score-driven models some papers use data on cryptocurrencies, but to the

best of our knowledge none of those papers investigate the performances of portfolios including cryp-

tocurrencies. The following works of the literature study the volatility, density, or value-at-risk (VaR)

forecasting performance of score-driven models for cryptocurrencies: Catania, Grassi, and Ravazzolo

(2018), Troster et al. (2019), Ranjbar (2020), Catania and Grassi (2021), Jeribi and Ghorbel (2021),

and Jiang et al. (2022). These works find that the volatility, density, or VaR forecasting performance

of score-driven models are superior to those of classical volatility models (Engle 1982; Bollerslev 1986;

Nelson 1991), motivating the score-driven portfolio analysis of the present paper. In addition, we refer

to the work of Matkovskyy, Jalan, and Dowling (2020), in which the effects of economic policy uncer-

tainty on the relationship between Bitcoin and equity markets are studied. We also refer to the recent
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work of Yarovaya, Matkovsyy, and Jalan (2021), in which the authors study the herding behavior of

cryptocurrencies for the period of the COVID-19 pandemic, without studying portfolio performances.

We study the performance of VOO-Bitcoin portfolios for the full investment period of March 21,

2018 to January 21, 2022, and the COVID-19 (coronavirus pandemic of 2019) investment period of

February 24, 2020 to January 21, 2022. Portfolio expected return forecasting and portfolio volatility

forecasting are performed by using a rolling-window estimation and forecasting approach. We compare

the performances of 900 portfolios for score-driven copulas, 40 portfolios for DCC (dynamic conditional

correlation) models (Engle 2002), and the benchmark portfolio which only includes VOO. We study

whether the performance of score-driven portfolios are better or worse than VOO.

We use five score-driven copulas (Clayton; rotated Clayton; Gumbel; rotated Gumbel; Student’s

t). Score-driven copulas are used in several works, for example: Boudt et al. (2012); Avdulaj and

Barunik (2013, 2015); Creal, Koopman, and Lucas (2013); De Lira Salvatierra and Patton (2015);

Koopman, Lit, and Lucas (2015); Atskanov (2016); Bartels and Ziegelmann (2016); Harvey and Thiele

(2016); Koopman, Lucas, and Scharth (2016); Oh and Patton (2016); Cerrato et al. (2017); Ayala and

Blazsek (2018a, 2018b); Bernardi and Catania (2018). We use four portfolio optimization strategies

(minimum-variance; Sharpe ratio-based mean-variance; two utility function-based mean-variance). We

use five portfolio weight updating frequencies (weekly; monthly; quarterly; semi-annual; annual). We

use nine combinations of (i) AR (autoregressive)-t-GARCH (generalized autoregressive conditional

heteroskedasticity) (Box and Jenkins 1970; Bollerlsev 1987), (ii) QAR (quasi-AR)-Beta-t-EGARCH

(exponential GARCH) (Harvey 2013; Harvey and Chakravarty 2008), (iii) QAR-Beta-Gen-t-EGARCH

(generalized t-distribution) (Harvey and Lange 2017). By using the aforementioned four portfolio

optimization strategies and five portfolio weight updating frequencies, we also study the performances

of AR-GARCH-DCC portfolios for the normal and t distributions.

We find that for both the full and COVID investment periods, the VOO performance is significantly

improved by the score-driven portfolios, which are also superior to the DCC portfolios.

In the remainder of this paper, Section 2 reviews the literature, Section 3 presents the econometric

methods, Section 4 describes the data, Section 5 summarizes the results, and Section 6 concludes.

2 Literature review

In this section, we review the literature on score-driven models for cryptocurrencies. The most closely
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related works to our paper investigate the volatility, density, or VaR forecasting performances of score-

driven models for cryptocurrencies. It is important to note that, to our knowledge, none of the papers

in the literature on score-driven models study portfolio performances for cryptocurrencies.

The work of Catania, Grassi, and Ravazzolo (2018) focuses on predicting the volatilities of Bitcoin,

Ethereum, Litecoin, and Ripple. For volatility modeling, the authors use the GARCH model (M1),

and a score-driven volatility model for the generalized hyperbolic skewed Student’s t-distribution (M2).

The following extensions of the score-driven volatility model are also used: leverage effects (M3), time-

varying skewness (M4), and fractional integration (M5). We note that the work of Catania and Grassi

(2017) develops (M2) to (M4). Daily data for Bitcoin and Litecoin are used for the period of April

29, 2013 to December 1, 2017. Daily data for Ethereum are used for the period of August 8, 2013 to

December 1, 2017. Daily data for Ripple are used for the period of August 5, 2013 to December 1,

2017. The results indicate that (M2) is superior to (M1), (M3), (M4), and (M5).

In the work of Troster et al. (2019), Bitcoin data are used for the period of July 19, 2010 to

April 16, 2019. For the classical model, the authors use an AR(1) expected return specification with

GARCH, EGARCH, APARCH (asymmetric power ARCH), GARCH with leverage effects, T-GARCH,

CGARCH, NGARCH, and H-GARCH volatility specifications for the normal, Student’s t, skewed t,

Johnson’s SU , and general error distributions (Troster et al. 2019). For the score-driven volatility

models, the normal, Student’s t, skewed t, and asymmetric t distributions are used. Out-of-sample

volatility forecasting performances and VaR backtests of the different volatility models are compared,

and the authors find that the score-driven models are superior to the classical models.

In the work of Matkovskyy, Jalan, and Dowling (2020), the effects of economic policy uncertainty

on the relationship between Bitcoin and equity markets are studied. The Bitcoin markets considered

are in the United States (US), the United Kingdom (UK), Europe, and Japan. The authors use daily

data for the period of April 27, 2015 to October 25, 2018. The stock indices considered are NASDAQ

100, S&P 500, Euronext 100, FTSE 100, and NIKKEI 225. Economic policy uncertainty variables are

measured for the US, the UK, Europe, and Japan. The score-driven volatility and copula models are

for the Student’s t-distribution. Impulse responses of Bitcoin volatility and Bitcoin-equity correlations

to economic policy shocks are estimated. The findings show that Bitcoin can be used as a hedging tool

against equity markets, in the case of US economic policy uncertainty.

The work of Ranjbar (2020) focuses on the in-sample and out-of-sample performances of the
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GARCH, realized-GARCH, GARCH with leverage effects, EGARCH, and score-driven volatility mod-

els for Bitcoin. That author uses data from the following Bitcoin markets: Coinbase, Bitfinex, and

Bitstamp; normal distribution for all classical univariate volatility models; the normal and Student’s t

distributions for the score-driven volatility models; the multivariate normal distribution for the multi-

variate classical volatility model; and the multivariate t-distribution for the multivariate score-driven

model (refer to Creal, Koopman, and Lucas 2011 for the latter).

The work of Catania and Grassi (2021) uses score-driven volatility models, which specify leverage

effects, long memory (captured by a two-component volatility filter; see Harvey 2013), and time-varying

skewness and kurtosis (time-varying kurtosis extends the works of Catania and Grassi 2017 and Catania,

Grassi, and Ravazzolo 2018), to forecast the volatility, density, and quantile (i.e. VaR and ES, expected

shortfall) for 606 cryptocurrencies. Those authors use daily data on the following cryptocurrencies

having the largest market capitalization: Bitcoin, Ethereum, Ripple, and Litecoin, for which there

are at least 700 observations. For the score-driven models, they use the Beta-Skew-t-EGARCH model

(i.e. skewed t-distribution) and the generalized hyperbolic skewed Student’s t-distribution. They also

highlight the importance of the time-varying skewness in the predictions.

In the work of Jeribi and Ghorbel (2021), the authors use daily data on gold, cryptocurrency, and

equity returns. The equity returns are from stock indices of Brazil, Russia, India, China, and South

Africa. The cryptocurrencies considered are Bitcoin, Dash, Ethereum, Monero, and Ripple. For the

equity indices from developed countries the S&P 500, NASDAQ, FTSE, and NIKKEI are used. The

score-driven model for the gold, cryptocurrency, and equity uses the normal, Student’s t, and skewed

t distributions. For the classical model, those authors use a multivariate GARCH model, named GO-

GARCH, with a non-zero conditional mean return component. They also use data for the period of

January 1, 2016 to December 31, 2019. Further, in the empirical analysis, VaR backtesting is performed

and the time-varying correlation of cryptocurrencies with equity indices is analyzed.

In the work of Yarovaya, Matkovskyy, and Jalan (2021), those authors use hourly data for the

period of 0:00 a.m. January 1, 2019 to 8:00 p.m. March 13, 2020, and they study the herding behavior

of cryptocurrencies for the period of the COVID-19 pandemic. They also study the question: Does

the COVID-19 pandemic amplify herding behavior in cryptocurrency markets? The cryptocurrencies

used are Bitcoin, Ethereum, and Litecoin. Those authors study price data for these cryptocurrencies

for the top four cryptocurrency markets by trading volume: USD (United States dollar), EUR (euro),
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JPY (Japanese yen), and KWR (South Korean won); aggregate the Bitcoin, Ethereum, and Litecoin

returns for each market (i.e. USD, EUR, JPY, or KWR), by using the average Bitcoin, Ethereum,

and Litecoin return for each hour; and estimate time-varying correlations of cryptocurrency returns

by using a score-driven model for the multivariate t-distribution. For all cryptocurrency markets, the

results suggest that COVID-19 does not amplify herding in cryptocurrency markets.

In the work of Jiang et al. (2022), the accelerating (aGAS) technique for a Gaussian-Cauchy

mixture model is introduced, which is applied to forecasting VaR for Bitcoin, Ripple, and Litecoin.

Those authors use daily data from the start of Bitcoin, Ripple, and Litecoin to June 15, 2020 (i.e.

part of the COVID-19 period is included in the sample), and find that, compared to the classical AR

moving average (ARMA)-GARCH model with Gaussian, skewed t, and nonparametric innovations, the

proposed aGAS model for a Gaussian-Cauchy mixture performs well in out-of-sample VaR forecasting.

3 Methods

The daily returns of the assets in the portfolio are rk,t = (pk,t − pk,t−1)/pk,t−1 for days t = 1, . . . , T ,

where k = 1, 2 indicate VOO and Bitcoin, respectively. The variable pk,t is the opening price, and we

use pre-sample data for pk,0. We assume that the risk-free rate is zero, hence rk,t also represents the

excess return over the risk-free rate. The portfolio excess return is rP,t = w′rt = w1r1,t +w2r2,t, where

rt ≡ (r1,t, r2,t)
′ is a vector of portfolio excess returns and w ≡ (w1, w2)

′ is a vector of portfolio weights.

The first investment strategy is 100% investment in VOO, which is the benchmark portfolio in this

paper. For the alternative strategies, the optimal portfolio weights are chosen as follows: (i) Minimizing

the portfolio variance σ2
P = w′Σw, where Σ is the variance-covariance matrix of the excess returns of

all assets in the portfolio. (ii) Maximizing the Sharpe ratio µP /σP , where µP = w′µ is the expected

excess portfolio return, where µ is a column vector of expected excess returns of all assets in the

portfolio, and σP is the volatility of the excess portfolio return. (iii) Maximizing the utility function

µP − (ζ/2)σ2
P by using the alternative risk aversion coefficients: ζ = 1 and ζ = 4 (DeMiguel, Garlappi,

and Uppal 2009). For strategies (i)-(iii), we consider weekly, monthly, quarterly, semi-annual, and

annual alternative updates of optimal portfolio weights. In the portfolio return application case study

of the present paper, we assume that the investor takes long positions in both VOO and Bitcoin.

In the following, we present the econometric models that we use for the estimation of the expected

excess returns µ and the variance-covariance matrix of excess returns Σ.

7



3.1 Classical models

First, for the marginal distribution we use the AR(1) (Box and Jenkins 1970) plus GARCH(1,1) with

leverage effects (Black 1976; Bollerslev 1987; Glosten, Jagannathan, and Runkle 1993) model:

rk,t = µk,t + vk,t = µk,t + λ
1/2
k,t ϵk,t (1)

µk,t = ck + ϕkrk,t−1 = ck + ϕk(µk,t−1 + vk,t−1) (2)

λk,t = ωk + βkλk,t−1 + [αk + α∗
k1(vk,t−1 < 0)]v2k,t−1 (3)

for k = 1, 2, where the excess return rk,t is the sum of the expected excess return µk,t = E(rk,t|Ft−1; Θ)

and the unexpected excess return vk,t, where Ft−1 = σ(rk,1, . . . , rk,t−1 : k = 1, 2), and Θ is the vector

of the time-invariant parameters. The parameters ck, ϕk, θk are real numbers. The parameters ωk > 0,

βk > 0, αk > 0, and α∗
k + αk > 0. The unexpected excess return is the product of the dynamic scale

parameter λ
1/2
k,t and the i.i.d. error term. For the standardized error term, we consider the alternatives

ϵk,t ∼ N(0, 1) and ϵk,t ∼ t(νk) with the Student’s t-distribution. The conditional standard deviation

of the unexpected excess return (i.e. conditional volatility) for the Gaussian distribution is σk,t =

SD(rk,t|Ft−1; Θ) = λ
1/2
k,t , and for the t-distribution is σk,t = SD(rk,t|Ft−1; Θ) = λ

1/2
k,t [νk/(νk − 2)]1/2.

For the filter λk,t, we consider the possibility of leverage effects α∗
k for k = 1, 2, for which negative

unexpected excess returns are identified by using the indicator function 1(x). The filter µk,t is initialized

by ck/(1 − ϕk), and it is covariance stationary if |ϕk| < 1. The filter λk,t for k = 1, 2 is initialized by

parameters λ1,1 and λ2,1, respectively, and it is covariance stationary if βk + αk + α∗
k/2 < 1.

Second, for the correlation coefficients we use the DCC model. For the estimation of the AR-

GARCH-DCC models, we use the two-step maximum likelihood (ML) method (Engle 2002).

3.2 Score-driven models

First, for the marginal distribution we use three alternatives. The first one is the classical AR plus

t-GARCH model from Section 3.1. For the other alternatives we use the following score-driven models:

rk,t = µk,t + vk,t = µk,t + exp(λk,t)ϵk,t (4)
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µk,t = ck + ϕkµk,t−1 + θksµ,k,t−1 (5)

λk,t = ωk + βkλk,t−1 + αksλ,k,t−1 + α∗
ksgn(−vk,t−1)(sλ,k,t−1 + 1) (6)

for k = 1, 2, where exp(·) is the exponential function, and for the ϵk,t i.i.d. error term we use the

following five alternative distributions: ϵk,t ∼ t[0, 1, exp(νk)+2], ϵk,t ∼ Gen-t[0, 1, exp(νk)+2, exp(ηk)],

where νk ∈ IR and ηk ∈ IR (Harvey and Chakravarty 2008; Harvey 2013; Harvey and Lange 2017).

The updating terms of Eqs. (5) and (6) are the scaled score function sµ,k,t, and the score function

sλ,k,t, respectively, which we define later. For λk,t, we consider the possibility of leverage effects α∗
k

for k = 1, 2, for which asymmetry is measured using the signum function sgn(·). We note that we do

not use the skewed generalized t-distribution, which is more general than the Student’s t and Gen-t

distributions, because Eq. (6) captures asymmetries by using the leverage effects term.

In the literature, the sigma-algebra Ft−1 includes the initial values of all score-driven filters (e.g.

Blasques et al. 2021). In the present paper, we use the same sigma-algebra Ft−1 for the score-driven

models and for the classical models (Section 3.1), because the score-driven filters are initialized by

using some elements of Θ; i.e. µk,t for k = 1, 2 are initialized by ck/(1− ϕk) for k = 1, 2, respectively,

and λk,t for k = 1, 2 are initialized by the parameters λk,1 for k = 1, 2, respectively.

For each score-driven probability distribution, the log conditional density of rk,t|(Ft−1; Θ), the

scaled score function sµ,k,t, the score function sλ,k,t, the conditional expected return E(rk,t|Ft−1; Θ),

and the conditional volatility σ(rk,t|Ft−1; Θ) are presented in Appendix A. For the results presented

in Appendix A, we refer to the works of Harvey and Chakravarty (2008), Harvey (2013), Caivano and

Harvey (2014), Blazsek, Ho, and Liu (2018), and Ayala, Blazsek, and Escribano (2019).

We use all possible combinations of the AR-t-GARCH, QAR-Beta-t-EGARCH, and QAR-Beta-

Gen-t-EGARCH models which provide nine alternatives of the marginal models. The transformations

of the error term by the scaled score function sµ,k,t and the score function sλ,k,t within QAR-Beta-t-

EGARCH, and QAR-Beta-Gen-t-EGARCH are presented in Appendix A.

Second, for the dynamic association of VOO and Bitcoin excess returns, we use the score-driven

Clayton, rotated Clayton, Gumbel, rotated Gumbel, and Student’s t copulas. For all copulas, we model

the score-driven parameter of association ρt as follows: (i) We use the dynamic parameter ρ̃t:

ρ̃t = δ + γρ̃t−1 + κsρ,t−1 (7)
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where the conditional copula score is given by sρ,t = ∂ ln ct[F1(r1,t|Ft−1; Θ), F2(r2,t|Ft−1; Θ)]/∂ρt, and

where F1(·|·) and F2(·|·) are the marginal conditional distribution functions of VOO and Bitcoin excess

returns, respectively. For each copula, the copula density function ct and the copula score sρ,t are

presented in Appendix B. We initialize ρ̃t by using δ/(1 − γ). (ii) The score-driven parameter of

association ρt is determined by using the following transformations of ρ̃t: For the Clayton and rotated

Clayton copulas: ρt = exp(ρ̃t) − 1 ∈ (−1,∞). For the Gumbel and rotated Gumbel copulas: ρt =

exp(ρ̃t) + 1 ∈ (1,∞). For the Student’s t copula: ρt = [1− exp(−ρ̃t)]/[1 + exp(−ρ̃t)] ∈ (−1, 1).

We estimate all score-driven models in one step, by using the ML method (Harvey 2013; Blasques

et al. 2021). In the literature, several works implement two-step estimation procedures for models

with copulas (e.g. Bernardi and Catania 2018), in which the parameters of the marginal distributions

are estimated in a first step, and the parameters of the copula are estimated in a second step. In the

present paper we use a one-step estimation procedure, motivated by the work of Joe (2015).

4 Data

We use daily opening price data for VOO and Bitcoin for the full sample period of September 18, 2014

to January 21, 2022 (source of data: Yahoo Finance). The VOO and Bitcoin daily opening prices are

denoted by p1,t and p2,t, respectively, which we use to compute daily returns. From the daily returns

we subtract the daily expense ratio fees, which in annual terms are 0.03% and 0.95% for VOO and

BITO, respectively. The resulting dependent variables are denoted rk,t for k = 1, 2. We assume that

the risk-free rate is zero. In Table 1, the descriptive statistics of r1,t and r2,t for the full sample period

are presented. In Figure 1, the evolution of p1,t, p2,t, r1,t, and r2,t for the full sample period is presented.

We define two investment periods: full investment period (March 21, 2018 to January 21, 2022) and

COVID-19 investment period (February 24, 2020 to January 21, 2022). For both investment periods

one-step ahead out-of-sample forecasts of expected excess return, volatility, and correlation coefficients

are estimated, by using rolling data windows (each with 882 observations). In Table 1, the descriptive

statistics for rk,t for the full and COVID-19 investment periods are presented.

For several cases the partial autocorrelation functions (PACFs) are significant, and the ARCH test

statistics (Engle 1982) are always significant (Table 1). The first-order autocorrelation corr(rk,t, rk,t−1)

estimates are negative in almost all cases, indicating overreaction effects. In the econometric specifica-

tions of this paper, we use first-order AR and QAR dynamics for expected excess returns, to control
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for serial correlation in the mean, and we use first-order dynamics for the volatility filters, to control

for ARCH effects. We note that the standard deviation estimates for VOO and Bitcoin are the highest

in the COVID-19 investment period (Table 1), and the unconditional volatility estimate of Bitcoin is

about four times higher than that of VOO for all sample periods. The impact of rk,t−1 on the abso-

lute return of the following trading day |rk,t| (i.e. a proxy of conditional volatility) is always negative

(Table 1), which supports the use of leverage effects in all volatility filters of this paper.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 1]

5 Empirical results

In Figure 2, we present the value of 1 USD investments over the full investment period (Figure 2(a)) and

the COVID-19 investment period (Figure 2(b)), providing an illustration of the portfolio performances.

Those figures focus on the evolution of the VOO, Bitcoin, the 10 best-performing score-driven copula-

based strategies, and the best-performing Gaussian-DCC and t-DCC model-based strategies. For both

investment periods of Figure 2, the performances of the 10 best-performing score-driven models (black

lines) are superior to those of VOO (dark blue lines), Bitcoin (light blue lines), the best-performing

Gaussian-DCC model (green lines), and the best-performing t-DCC model (red lines). The model

specifications and the portfolio strategies of Figure 2 are presented in Table 2. Some interesting

conclusions are obtained from Table 2 on the best-performing score-driven portfolios:

First, for both VOO and Bitcoin, for all but one of the models the marginal distributions are score-

driven models (Table 2). This result indicates for equity and BITO portfolio investors that the score-

driven marginals are superior to the classical AR-GARCH alternative. Second, for the performances

of the score-driven copulas, the portfolio performance results for all investment periods show that the

best-performing score-driven copulas are the Gumbel and rotated Gumbel copulas (Table 2). This

result indicates for equity and BITO portfolio investors that the Gumbel and rotated Gumbel copulas

are superior to the DCC and score-driven Student’s t, Clayton, and rotated Clayton copulas. Third, for

the portfolio weight updating frequencies, for both investment periods the best-performing portfolios

use the semi-annual updating frequency (Table 2). This result indicates for equity and BITO portfolio

investors that the semi-annual updating frequency is superior to the weekly, monthly, quarterly, or

annual updating frequencies. Fourth, for the portfolio optimization strategies for both investment
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periods, the best-performing portfolios use either the Sharpe ratio or the utility function (Table 2).

This suggests that the minimum-variance portfolio strategy is the worst-performing strategy.

In Table 3, we report statistical test results on the differences between the returns of alternative

portfolio strategies. We compare the performances of VOO, Bitcoin, the score-driven portfolios, and

the DCC-based portfolios. For each pair of portfolio strategies, the comparison is done by regressing

the portfolio return difference on a constant, and by using the ordinary least squares (OLS) estimator

with heteroskedasticity and autocorrelation consistent (HAC) standard errors (Newey and West 1987).

For both investment periods, the results in Table 3 show that the performances of several score-

driven portfolios, Gaussian-DCC portfolios, and t-DCC portfolios are superior to the performance of

VOO. The results also show that VOO is practically never superior to score-driven portfolios, Gaussian-

DCC portfolios, and t-DCC portfolios. Finally, Table 3 also shows that the performances of several

score-driven portfolios are superior to those of the Gaussian-DCC and t-DCC portfolios.

In Figures 3 and 4, we provide a graphical analysis by classifying the final values of the VOO-Bitcoin

portfolios, with respect to the econometric model of marginal distributions of VOO and Bitcoin, the

econometric model of association, the objective function of the portfolio optimization problem, and the

updating frequency of portfolio weights. In Figures 3 and 4, we present the final portfolio values for

the full investment period and the COVID-19 investment period, respectively.

Figures 3 and 4 provide the following conclusions, which may help the investors with the selection of

portfolio strategies for VOO and Bitcoin: First, the results of all panels of Figures 3 and 4 are similar.

Second, with respect to the models of marginal distributions, the portfolios for score-driven copulas

are clearly superior to VOO, Bitcoin, normal-DCC portfolios, and t-DCC portfolios (Figures 3A, 3B,

4A, and 4B). For the marginal distributions of the models with score-driven copulas, AR-t-GARCH

and QAR-Beta-t-EGARCH are superior to QAR-Beta-Gen-t-EGARCH (Figures 3A, 3B, 4A, and 4B).

Third, with respect to the models of association, the portfolios for score-driven copulas clearly are

superior to VOO, Bitcoin, normal-DCC portfolios, and t-DCC portfolios (Figures 3C and 4C). For

the score-driven copulas graphically we do not see significant differences among the Clayton, rotated

Clayton, Gumbel, rotated Gumbel, and Student’s t copulas. Fourth, with respect to the objective

function of the portfolio maximization problem, the utility functions with risk aversion coefficients 1

and 4 are similar and superior to the Sharpe ratio, which is highly superior to the minimum-variance

portfolio (Figures 3D and 4D). Fifth, with respect to the updating frequencies of portfolio weights, the

12



best strategy is the semi-annual update, followed by the similar annual and quarterly updates, which

are followed by the similar monthly and weekly updates (Figures 3E and 4E).

[APPROXIMATE LOCATION OF TABLES 2, 3, AND FIGURES 2, 3, 4]

6 Conclusions

The advantages of the score-driven models may imply better-performing portfolios using score-driven

models than classical observation-driven time series models, for the estimation of expected return and

volatility of portfolios. The main contribution of this paper is that for the optimization of VOO

plus Bitcoin portfolios we use score-driven models, which has never been considered in the literature.

Motivated by the recent start of trading of BITO, we have studied whether equity portfolios can be

improved by using the BITO cryptocurrency ETF. This is a relevant question because the trading fee

of BITO is significantly lower than that the trading fee of Bitcoin, and BITO is traded on a regulated

market while the cryptocurrency exchanges on which Bitcoin is traded are largely unregulated. For

the equity component of the portfolio, we have used an ETF that replicates the S&P 500 index.

In the empirical application, the full sample period is from September 18, 2014 to January 21,

2022. We have studied the performances of VOO-Bitcoin portfolios for the full investment period of

March 21, 2018 to January 21, 2022, and the COVID-19 investment period of February 24, 2020 to

January 21, 2022. Portfolio expected return and portfolio volatility forecasting has been performed

by using a rolling-window estimation and forecasting approach. We have compared the performances

of VOO, 40 portfolios for DCC models, and 900 portfolios for score-driven copulas. We have studied

whether the performances of score-driven portfolios are better or worse than the performance of VOO.

For the score-driven portfolios, we have used five score-driven copulas, four portfolio optimization

strategies, five portfolio weight updating frequencies, and nine combinations of (i) AR-t-GARCH, (ii)

QAR-Beta-t-EGARCH, (iii) QAR-Beta-Gen-t-EGARCH. In addition, we have also studied whether

the performances of DCC-based portfolios is better or worse than the performance of VOO. For the

DCC-based portfolios we have used AR-Gaussian-GARCH and AR-t-GARCH marginals.

We have found that, for both the full and COVID investment periods, the VOO performance is

significantly improved by the score-driven portfolios which are also superior to the DCC portfolios.
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Appendix A

In this appendix, for each distribution technical details are presented for the: (i) log conditional

density of rk,t, (ii) scaled score function sµ,k,t, scale factor K(λk,t) for sµ,k,t, and score function sλ,k,t,

(iii) conditional mean and conditional standard deviation of rk,t. For the conditioning set, we use

Ft−1 = σ(rk,1, . . . , rk,t−1 : k = 1, 2), and the vector of the constant parameters is denoted Θ.

Student’s t-distribution—ϵk,t ∼ t[0, 1, exp(νk) + 2] i.i.d., where νk ∈ IR is a shape parameter, and

exp(·) is the exponential function. (i) The log conditional density of rk,t is

ln f(rk,t|Ft−1; Θ) = lnΓ

[
exp(νk) + 3

2

]
− ln Γ

[
exp(νk) + 2

2

]
(A.1)

− ln(π) + ln[exp(νk) + 2]

2
− λk,t −

exp(νk) + 3

2
ln

{
1 +

ϵ2k,t
exp(νk) + 2

}

where ln(·) is the natural logarithm function and Γ(·) is the gamma function. (ii) The score function

with respect to µk,t is (Harvey 2013):

∂ ln f(rk,t|Ft−1; Θ)

∂µk,t
=

[exp(νk) + 2] exp(λk,t)ϵk,t
ϵ2k,t + exp(νk) + 2

× exp(νk) + 3

[exp(νk) + 2] exp(2λk,t)
= (A.2)

= sµ,k,t ×
exp(νk) + 3

[exp(νk) + 2] exp(2λk,t)
= sµ,k,t ×K(λk,t)

where the scaled score function sµ,k,t is defined in the second equality, and the scale factor K(λk,t) is

defined in the last equality. The sµ,k,t term trims outliers, because sµ,k,t →p 0 when |ϵk,t| → ∞ (Figure
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A1(a)). The score function with respect to λk,t is given by (Harvey and Chakravarty 2008):

sλ,k,t =
∂ ln f(rk,t|Ft−1; Θ)

∂λk,t
=

[exp(νk) + 3]ϵ2k,t
exp(νk) + 2 + ϵ2k,t

− 1 (A.3)

The updating term sλ,k,t Winsorizes extreme observations, because sλ,k,t →p c > 0 when |ϵk,t| → ∞

(Figure A1(b)). (iii) The conditional mean and standard deviation of rk,t, respectively, are

E(rk,t|Ft−1; Θ) = µk,t (A.4)

σ(rk,t|Ft−1; Θ) = σk,t = exp(λk,t)

[
exp(νk) + 2

exp(νk)

]1/2
(A.5)

Gen-t distribution—ϵt ∼ Gen-t[0, 1, exp(νk)+2, exp(ηk)] i.i.d., where νk ∈ IR, and ηk ∈ IR are shape

parameters. For exp(ηk) = 2, the Gen-t distribution is the Student’s t-distribution.

(i) The log-density of rk,t is (Ayala, Blazsek, and Escribano 2019):

ln f(rk,t|Ft−1; Θ) = ηk − λk,t − ln(2)− ln[exp(νk) + 2]

exp(ηk)
− ln Γ

[
exp(νk) + 2

exp(ηk)

]
(A.6)

− ln Γ[exp(−ηk)] + ln Γ

[
exp(νk) + 3

exp(ηk)

]
− exp(νk) + 3

exp(ηk)
ln

{
1 +

|ϵk,t|exp(ηk)

[exp(νk) + 2]

}

where sgn(·) is the signum function. (ii) The score function with respect to µt is given by:

∂ ln f(rk,t|Ft−1; Θ)

∂µt
= (A.7)

=
[exp(νk) + 2] exp(λk,t)ϵk,t|ϵk,t|exp(ηk)−2

|ϵk,t|exp(ηk) + [exp(νk) + 2]
× exp(νk) + 3

[exp(νk) + 2] exp(2λk,t)
=

= sµ,k,t ×
exp(νk) + 3

[exp(νk) + 2] exp(2λk,t)
≡ uµ,k,t ×K(λk,t)

where the scaled score function sµ,k,t is defined in the second equality, and the scale factor K(λk,t) is

defined in the last equality. The sµ,k,t term trims outliers, because sµ,k,t →p 0 when |ϵk,t| → ∞ (Figure

A1(c)). The score function with respect to λk,t is (Ayala, Blazsek, and Escribano 2019):

sλ,k,t =
∂ ln f(rk,t|Ft−1; Θ)

∂λk,t
=

|ϵk,t|exp(ηk)[exp(νk) + 3]

|ϵk,t|exp(ηk) + [exp(νk) + 2]
− 1 (A.8)
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The updating term sλ,k,t Winsorizes outliers, because sλ,k,t →p c > 0 when |ϵk,t| → ∞ (Figure A1(d)).

(iii) The conditional mean and standard deviation of rk,t, respectively, are

E(rk,t|Ft−1; Θ) = µk,t (A.9)

σ(rk,t|Ft−1; Θ) = σk,t = exp(λk,t)[exp(νk) + 2]exp(−ηk) ×

 B
[

3
exp(ηk)

, exp(νk)exp(ηk)

]
B
[

1
exp(ηk)

, exp(νk)+2
exp(ηk)

]


1/2

(A.10)

where B(·, ·) is the beta function (Ayala, Blazsek, and Escribano 2019).
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(a) Student’s t for sµ,k,t (trimming) (b) Student’s t for sλ,k,t (Winsorizing)

(c) Gen-t for sµ,k,t (trimming) (d) Gen-t for sλ,k,t (Winsorizing)

Figure A1. Scaled score function sµ,k,t and score function sλ,k,t estimates, as functions of ϵt. Notes: ML estimates of the shape

parameters with λt = 0 are used. In parentheses, we refer to the asymptotic transformation of outliers, as |ϵt| → ∞.
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Appendix B

Clayton copula—The bivariate Clayton copula density function is

ct(u, v) ≡ c(u, v; ρt|Ft−1; Θ) = (1 + ρt)(uv)
−(ρt+1)(u−ρt + v−ρt − 1)−(1+2ρt)/ρt (B.1)

where u and v are realizations of U [0, 1] random variables (we use the same notation for the remaining

copulas), and ρt ∈ [−1,∞)\{0} (Harvey 2013; Joe 2015). The partial derivative of ln c(u, v; ρt) is

sρ,t ≡ sρ(u, v; ρt|Ft−1; Θ) =
∂ ln c(u, v; ρt)

∂ρt
=

1

1 + ρt
− ln(uv) +

1

ρ2t
ln
(
u−ρt + v−ρt − 1

)
(B.2)

+
(1 + 2ρt)[u

−ρt ln(u) + v−ρt ln(v)]

ρt(u−ρt + v−ρt − 1)

Rotated Clayton copula—The bivariate rotated Clayton copula density function is

ct(u, v) ≡ c(u, v; ρt|Ft−1; Θ) (B.3)

= (1 + ρt)[(1− u)(1− v)]−(ρt+1)[(1− u)−ρt + (1− v)−ρt − 1]−(1+2ρt)/ρt

with ρt ∈ [−1,∞)\{0} (Patton 2004). The partial derivative of ln c(u, v; ρt) is

sρ,t ≡ sρ(u, v; ρt|Ft−1; Θ) =
∂ ln c(u, v; ρt)

∂ρt
=

1

1 + ρt
− ln[(1− u)(1− v)] (B.4)

+
1

ρ2t
ln

[
(1− u)−ρt + (1− v)−ρt − 1

]
+

+
(1 + 2ρt)[(1− u)−ρt ln(1− u) + (1− v)−ρt ln(1− v)]

ρt[(1− u)−ρt + (1− v)−ρt − 1]

Gumbel copula—The bivariate Gumbel copula density function is

ct(u, v) ≡ c(u, v; ρt|Ft−1; Θ) = exp
{
− [(− lnu)ρt + (− ln v)ρt ]1/ρt

}
× (B.5)

× [ln(u) ln(v)]ρt−1

uv [(− lnu)ρt + (− ln v)ρt ]2−1/ρt
×

{
[(− lnu)ρt + (− ln v)ρt ]1/ρt + ρt − 1

}
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with ρt ∈ [1,∞) (Joe 2015; Patton 2004). The partial derivative of ln c(u, v; ρt) is

sρ,t ≡ sρ(u, v; ρt|Ft−1; Θ) (B.6)

=
∂ ln c(u, v; ρt)

∂ρt
=

ξ
1/ρt−1
1

ρ2t
[ξ1 ln(ξ1)− ρtξ2] + ln(lnu ln v) +

(1− 2ρt)ξ2
ρtξ1

− ln(ξ1)

ρ2t
+

ξ
1/ρt−1
1 [−ξ1 ln(ξ1) + ρtξ2] + 1

ρ2t

(
ξ
1/ρt
1 + ρt − 1

)
where ξ1 = (− lnu)ρt + (− ln v)ρt and ξ2 = (− lnu)ρt ln(− lnu) + (− ln v)ρt ln(− ln v).

Rotated Gumbel copula—The bivariate rotated Gumbel copula density function is

ct(u, v) ≡ c(u, v; ρt|Ft−1; Θ) = exp
{
−{[− ln(1− u)]ρt + [− ln(1− v)]ρt ]1/ρt

}
× (B.7)

× [ln(1− u) ln(1− v)]ρt−1

(1− u)(1− v) {[− ln(1− u)]ρt + [− ln(1− v)]ρt}2−1/ρt
×

×
{
{[− ln(1− u)]ρt + [− ln(1− v)]ρt ]1/ρt + ρt − 1

}
with ρt ∈ [1,∞) (Patton 2004). The partial derivative of ln c(u, v; ρt) is

sρ,t ≡ sρ(u, v; ρt|Ft−1; Θ) (B.8)

=
∂ ln c(u, v; ρt)

∂ρt
=

ξ
1/ρt−1
1

ρ2t
[ξ1 ln(ξ1)− ρtξ2] + ln[ln(1− u) ln(1− v)]

+
(1− 2ρt)ξ2

ρtξ1
− ln(ξ1)

ρ2t
+

ξ
1/ρt−1
1 [−ξ1 ln(ξ1) + ρtξ2] + 1

ρ2t

(
ξ
1/ρt
1 + ρt − 1

)
where ξ1 = [− ln(1− u)]ρt + [− ln(1− v)]ρt and

ξ2 = [− ln(1− u)]ρt ln[− ln(1− u)] + [− ln(1− v)]ρt ln[− ln(1− v)] (B.9)

Student’s t copula—The bivariate Student’s t-copula density function is

ct(u, v) ≡ c(u, v; ν, ρt|Ft−1; Θ) =
1√

1− ρ2t

Γ[(ν + 2)/2]Γ(ν/2)

Γ2[(ν + 1)/2]
× (B.10)
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×

{
1 +

[T−1
ν (u)]

2
+[T−1

ν (v)]
2−2ρtT

−1
ν (u)T−1

ν (v)

ν(1−ρ2t )

}− ν+2
2

{
1 +

[T−1
ν (u)]

2

ν

}− ν+1
2

{
1 +

[T−1
ν (v)]

2

ν

}− ν+1
2

where T−1
ν (x) is the inverse of the Student’s t-distribution function, ρt is the correlation coefficient,

and ν denotes degrees of freedom (Joe 2015). The partial derivative of ln c(u, v; ν, ρt) is

sρ,t ≡ sρ(u, v; ν, ρt|Ft−1; Θ) =
∂ ln c(u, v; ν, ρt)

∂ρt
=

ρt
1− ρ2t

+ (B.11)

+
ν + 2

ρ2t − 1
×

ρt

{[
T−1
ν (u)

]2
+
[
T−1
ν (v)

]2}− (ρ2t + 1)T−1
ν (u)T−1

ν (v)[
T−1
ν (u)

]2
+
[
T−1
ν (v)

]2 − 2ρtT
−1
ν (u)T−1

ν (v)− ν(ρ2t − 1)

20



References

Atskanov, I. A. 2016. “Application of GAS Copulas for Optimization of Investment Portfolio Shares of Russian Com-

panies.” Finance and Credit 22: 25–37. https://www.fin-izdat.com/journal/fc/detail.php?ID=69480.

Avdulaj, K., and J. Barunik. 2013. “Can We still Benefit from International Diversification? The Case of the Czech

and German Stock Markets.” Czech Journal of Economics and Finance 63: 425–442.

Avdulaj, K., and J. Barunik. 2015. “Are Benefits from Oil-Stocks Diversification Gone? New Evidence from a Dynamic

Copula and High Frequency Data.” Energy Economics 51: 31–44.

Ayala, A., and S. Blazsek. 2018a. “Score-Driven Copula Models for Portfolios of Two Risky Assets.” European Journal

of Finance 24 (18): 1861–1884.

Ayala, A., and S. Blazsek. 2018b. “Equity Market Neutral Hedge Funds and the Stock Market: An Application of

Score-Driven Copula Models.” Applied Economics 50 (37): 4005–4023.

Ayala, A., S. Blazsek, and A. Escribano. 2019. “Maximum Likelihood Estimation of Score-Driven Models with Dynamic

Shape Parameters: An Application to Monte Carlo Value-at-Risk.” Working Paper 19-12, University Carlos III of

Madrid, Department of Economics. https://e-archivo.uc3m.es/handle/10016/28638.

Bartels, M., and F. A. Ziegelmann. 2016. “Market Risk Forecasting for High Dimensional Portfolios via Factor Copulas

with GAS Dynamics.” Insurance: Mathematics and Economics 70: 66–79.

Bernardi, M., and L. Catania. 2018. “Portfolio Optimisation under Flexible Dynamic Dependence Modelling.” Journal

of Empirical Finance 48: 1–18.

Black, F. 1976. “Studies of Stock Market Volatility Changes.” 1976 Proceedings of the American Statistical Association

Business and Economic Statistics Section.

Blasques, F., J. van Brummelen, S. J. Koopman, and A. Lucas. 2022. “Maximum Likelihood Estimation for Score-Driven

Models.” Journal of Econometrics 227 (2): 325–346

Blasques, F., S. J. Koopman, and A. Lucas. 2015. “Information-Theoretic Optimality of Observation-Driven Time

Series Models for Continuous Responses.” Biometrika 102 (2): 325–343.

Blazsek, S., H.-C. Ho, and S.-P. Liu. 2018. “Score-Driven Markov-Switching EGARCH Models: An Application to

Systematic Risk Analysis.” Applied Economics 50 (56): 6047–6060.

Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31 (3):307–

327.

Bollerslev, T. 1987. “A Conditionally Heteroskedastic Time Series Model for Security Prices and Rates of Return Data.”

Review of Economics and Statistics 69 (3): 542–547.

Boudt, K., J. Danielsson, S. J. Koopman, and A. Lucas. 2012. “Regime Switches in the Volatility and Correlation of

Financial Institutions.” National Bank of Belgium Working Paper Series, No 227, Brussels.

https://doi.org/10.2139/ssrn.2139462.

21



Box, G. E. P., and G. M. Jenkins. 1970. Time Series Analysis, Forecasting and Control. San Francisco: Holden-Day.

Caivano, M., and A. C. Harvey. 2014. “Time-Series Models with an EGB2 Conditional Distribution.” Journal of Time

Series Analysis 35 (6): 558–571.

Catania, L, and S. Grassi. 2017. “Modelling Crypto-Currencies Financial Time-Series.” SSRN Working Paper.

http://ssrn.com/abstract=3028486.

Catania L., S. Grassi, and F. Ravazzolo. 2018. “Predicting the Volatility of Cryptocurrency Time–Series.” CAMP

Working Paper Series, No 3/2018. http://www.bi.no/camp.

Catania L., S. Grassi, and F. Ravazzolo. 2019. “Forecasting Cryptocurrencies Under Model and Parameter Instability.”

International Journal of Forecasting 35 (2): 485–501.

Catania L., and S. Grassi. 2021. “Forecasting Cryptocurrency Volatility.” International Journal of Forecasting

https://doi.org/10.1016/j.ijforecast.2021.06.005.

Cerrato, M., J. Crosby, M. Kim, and Y. Zhao. 2017. “Relation between Higher Order Comovements and Dependence

Structure of Equity Portfolio.” Journal of Empirical Finance 40: 101–120.

Cox, D. R. 1981. “Statistical Analysis of Time Series: Some Recent Developments (with Discussion and Reply).”

Scandinavian Journal of Statistics 8: 93–115.

Creal, D., S. J. Koopman, and A. Lucas. 2008. “A General Framework for Observation Driven Time-Varying Parameter

Models.” Tinbergen Institute Discussion Paper 08-108/4. https://papers.tinbergen.nl/08108.pdf.

Creal, D., S. J. Koopman, and A. Lucas. 2011. “A Dynamic Multivariate Heavy-Tailed Model for Time-Varying

Volatilities and Correlations.” Journal of Business & Economic Statistics 29 (4): 552–563.

Creal, D., S. J. Koopman, and A. Lucas. 2013. “Generalized Autoregressive Score Models with Applications.” Journal

of Applied Econometrics 28 (5): 777–795.

De Lira Salvatierra, I., and A. J. Patton. 2015. “Dynamic Copula Models and High Frequency Data.” Journal of

Empirical Finance 30: 120–135.

DeMiguel, V., L. Garlappi, and R. Uppal. 2009. “Optimal versus Naive Diversification: How Inefficient is the 1/N

Portfolio Strategy?” Revivew of Financial Studies 22 (5): 1915–1953.

Engle, R. F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom

Inflation.” Econometrica 50 (4): 987–1007.

Engle, R. 2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Condi-

tional Heteroskedasticity Models.” Journal of Business & Economic Statistics 20 (3): 339–351.

Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. “On the Relation between the Expected Value and the

Volatility of the Nominal Excess Return on Stocks.” Journal of Finance 48 (5): 1779–1801.

Harvey, A. C. 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic

Time Series. Econometric Society Monographs. Cambridge: Cambridge University Press.

22



Harvey, A. C., and T. Chakravarty. 2008. Beta-t-(E)GARCH. Cambridge Working Papers in Economics 0840, Faculty

of Economics, University of Cambridge. https://econpapers.repec.org/paper/camcamdae/0840.htm.

Harvey, A., and R. J. Lange. 2017. “Volatility Modeling with a Generalized t Distribution.” Journal of Time Series

Analysis 38 (2): 175–190.

Harvey, A.C., and S. Thiele. 2016. “Testing against Changing Correlation.” Journal of Empirical Finance 38: 575–589.

Jeribi, A., and A. Ghorbel. 2021. “Forecasting Developed and BRICS Stock Markets with Cryptocurrencies and Gold:

Generalized Orthogonal Generalized Autoregressive Conditional Heteroskedasticity and Generalized Autoregressive

Score Analysis.” International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-06-2020-0688.

Jiang, K., L. Zeng, J. Song, and Y. Liu. 2022. “Forecasting Value-at-Risk of Cryptocurrencies Using the Time-Varying

Mixture-Accelerating Generalized Autoregressive Score Model.” Research in International Business and Finance.

https://doi.org/10.1016/j.ribaf.2022.101634.

Joe, H. 2015. Dependence Modeling with Copulas. Boca Raton: CRC Press, Taylor & Francis Group.

Koopman, S. J., R. Lit, and A. Lucas. 2015. “Intraday Stock Price Dependence Using Dynamic Discrete Copula

Distributions.” Tinbergen Institute Discussion Paper, TI 15-037/III/DSF90, Amsterdam.

https://www.econstor.eu/bitstream/10419/111716/1/15037.pdf.

Koopman, S. J., A. Lucas, and M. Scharth. 2016. “Predicting Time-Varying Parameters with Parameter-Driven and

Observation-Driven Models.” Review of Economics and Statistics 98 (1): 97–110.

Matkovskyy, R., A. Jalan, and M. Dowling. 2020. “Effects of Economic Policy Uncertainty Shocks on the Interde-

pendence between Cryptocurrency and Traditional Financial Markets.” The Quarterly Review of Economics and

Finance 77: 150–155.

Nelson, D. B. 1991. “Conditional Heteroskedasticity in Asset Returns: A New Approach.” Econometrica 59 (2):

347–370.

Newey, W.K., and K. D. West. 1987. “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation

Consistent Covariance Matrix.” Econometrica 55 (3): 703–708.

Oh, D. H., and A. J. Patton. 2016. “Time-Varying Systemic Risk: Evidence from a Dynamic Copula Model of CDS

Spreads.” Journal of Business & Economic Statistics 36 (2): 181–195.

Patton, A. J. 2004. “On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation.”

Journal of Financial Econometrics 2 (1): 130–168.

Ranjbar, M. R. 2020. “GARCH and GAS: Comparison of Volatility Models for Bitcoin in Different Exchanges.” Master

Thesis in Finance, Department of Finance, University of Gothenburg. https://gupea.ub.gu.se/handle/2077/65568.

Troster, V., A. K. Tiwari, M. Shahbaz, and D. N. Macedo. 2019. “Bitcoin returns and risk: A general GARCH and

GAS analysis.” Finance Research Letters 30: 187–193.

Yarovaya, L., R. Matkovskyy, and A. Jalan. 2021. “The Effects of a “Black Swan” Event (COVID-19) on Herding

Behavior in Cryptocurrency Markets.” Journal of International Financial Markets, Institutions & Money 75:

101321.

23



Table 1: Descriptive statistics.

A. Full sample Full investment period COVID-19 investment period

Start date September 18, 2014 March 21, 2018 February 24, 2020

End date January 21, 2022 January 21, 2022 January 21, 2022

Sample size T 1850 968 484

B. VOO Bitcoin VOO Bitcoin VOO Bitcoin

Minimum −0.0846 −0.3659 −0.0846 −0.3659 −0.0846 −0.3659

Maximum 0.0631 0.2769 0.0631 0.2769 0.0631 0.1876

Mean 0.0005 0.0035 0.0006 0.0026 0.0007 0.0042

Standard deviation 0.0103 0.0459 0.0118 0.0449 0.0142 0.0480

Skewness −0.9591 0.0200 −0.9353 −0.1813 −0.9824 −0.8169

Excess kurtosis 9.4909 6.0637 7.9943 7.2829 6.7408 8.1158

PACF(1) −0.0669∗∗∗ 0.0100 −0.0659∗∗ −0.0322 −0.0733 −0.0996∗∗

PACF(2) 0.0127 0.0129 0.0377 0.0699∗∗ 0.0390 0.0938∗∗

PACF(3) 0.0549∗∗ 0.0169 0.0411 0.0241 0.0399 0.0211

ARCH(5) statistic 344.3170∗∗∗ 64.9012∗∗∗ 220.3270∗∗∗ 16.7539∗∗∗ 110.4200∗∗∗ 15.2066∗∗∗

corr(rk,t, rk,t−1) −0.0670 0.0100 −0.0660 −0.0322 −0.0739 −0.0996

corr(|rk,t|, rk,t−1) −0.1206 −0.0367 −0.0801 −0.0185 −0.0709 −0.0531

Partial autocorrelation function (PACF); autoregressive conditional heteroskedasticity (ARCH); coronavirus pandemic of 2019

(COVID-19). Daily opening prices are denoted pk,t for k ∈ {1, 2} ≡ {VOO,Bitcoin}. Daily returns are denoted rk,t = (pk,t −

pk,t−1)/pk,t−1 for k ∈ {1, 2}. We assume that the risk-free rate is zero. From the daily excess returns, we subtract the fees cor-

responding to the 0.03% annual expense ratio of VOO and the 0.95% annual expense ratio of BITO, respectively. The PACF and

ARCH lag-orders are reported in parentheses. ∗∗, and ∗∗∗ show significance at the 5%, and 1% levels, respectively.
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Table 2: Ranking of score-driven portfolio performances by using portfolio values at the end of the investment periods.

A. Full investment period (March 21, 2018 to January 21, 2022)

Ranking VOO marginal Bitcoin marginal Copula Update Portfolio strategy Value

1 QAR-Beta-t-EGARCH AR-t-GARCH Gumbel Semi-annual Mean-Var, Sharpe 10.2912

2 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 4 10.1072

3 QAR-Beta-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 4 10.0601

4 QAR-Beta-t-EGARCH QAR-Beta-t-EGARCH Student’s t Semi-annual Mean-Var, RA = 1 9.9926

5 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH Student’s t Semi-annual Mean-Var, RA = 1 9.9758

6 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 1 9.9353

7 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH Gumbel Semi-annual Mean-Var, RA = 1 9.9341

8 QAR-Beta-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 1 9.9270

9 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH Clayton Semi-annual Mean-Var, RA = 1 9.9108

10 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 4 9.8486

...
...

...
...

...
...

...

Bitcoin 4.5538

t-DCC AR-t-GARCH AR-t-GARCH t-DCC Quarterly Mean-Var, RA = 1 2.6380

normal-DCC AR-normal-GARCH AR-normal-GARCH normal-DCC Quarterly Mean-Var, RA = 1 2.0819

VOO 1.6392

B. COVID-19 investment period (February 24, 2020 to January 21, 2022)

Ranking VOO marginal Bitcoin marginal Copula Update Portfolio strategy Value

1 QAR-Gen-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 4 4.8814

2 QAR-Beta-t-EGARCH QAR-Beta-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 4 4.8607

3 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH Gumbel Semi-annual Mean-Var, RA = 1 4.8521

4 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH Gumbel Semi-annual Mean-Var, Sharpe 4.8520

5 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH R Gumbel Semi-annual Mean-Var, Sharpe 4.8518

6 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 1 4.8508

7 QAR-Beta-t-EGARCH QAR-Gen-t-EGARCH R Gumbel Semi-annual Mean-Var, RA = 1 4.8459

8 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH Clayton Semi-annual Mean-Var, RA = 1 4.8425

9 QAR-Gen-t-EGARCH QAR-Gen-t-EGARCH Student’s t Semi-annual Mean-Var, RA = 1 4.8397

10 QAR-Beta-t-EGARCH QAR-Gen-t-EGARCH Gumbel Semi-annual Mean-Var, RA = 1 4.8387

..

.
..
.

..

.
...

...
...

...

Bitcoin 4.0511

VOO 1.3791

t-DCC AR-t-GARCH AR-t-GARCH t-DCC Annual Mean-Var, RA = 1 1.3507

normal-DCC AR-normal-GARCH AR-normal-GARCH normal-DCC Semi-annual Mean-Var, RA = 1 1.2770

Quasi-autoregressive (QAR); exponential generalized AR conditional heteroskedasticity (EGARCH); risk aversion (RA); coronavirus

pandemic of 2019 (COVID-19); Clayton copula (Clayton); rotated Clayton copula (R Clayton); Gumbel copula (Gumbel); rotated

Gumbel copula (R Gumbel); Student’s t-copula (Student’s t); mean-variance strategy for the Sharpe ratio (Mean-Var, Sharpe);

mean-variance strategy for a utility function (Mean-Var, RA). In the table, normal-DCC and t-DCC show the performances of the

best-performing normal-DCC and t-DCC portfolios, respectively.
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Table 3: Statistical comparison of the performances of 900 score-driven portfolios, 2× 20 DCC portfolios, and VOO.

A. Full investment period (March 21, 2018 to January 21, 2022) Count %

Score-driven portfolios are superior to VOO 225 out of 900 25%

normal-DCC portfolios are superior to VOO 6 out of 20 30%

t-DCC portfolios are superior to VOO 7 out of 20 35%

Score-driven portfolios are inferior to VOO 0 out of 900 0%

normal-DCC portfolios are inferior to VOO 0 out of 20 0%

t-DCC portfolios are inferior to VOO 1 out of 20 5%

Score-driven portfolios are superior to the best-performing normal-DCC portfolio 119 out of 900 13%

Score-driven portfolios are superior to the best-performing t-DCC portfolio 49 out of 900 5%

B. Covid investment period (February 24, 2020 to January 21, 2022) Count %

Score-driven portfolios are superior to VOO 433 out of 900 48%

normal-DCC portfolios are superior to VOO 10 out of 20 50%

t-DCC portfolios are superior to VOO 11 out of 20 55%

Score-driven portfolios are inferior to VOO 0 out of 900 0%

normal-DCC portfolios are inferior to VOO 0 out of 20 0%

t-DCC portfolios are inferior to VOO 0 out of 20 0%

Score-driven portfolios are superior to the best-performing normal-DCC portfolio 145 out of 900 16%

Score-driven portfolios are superior to the best-performing t-DCC portfolio 90 out of 900 10%

Dynamic conditional correlation (DCC). We show the number of statistically superior portfolios and their proportions, at the 10%

level of significance. For testing the differences between the performances of the alternative portfolios, we use an OLS-HAC (ordinary

least squares, heteroskedasticity and autocorrelation consistent) estimator for portfolio return differences.
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A. Full investment period (March 21, 2018 to January 21, 2022)

B. COVID-19 investment period (February 24, 2020 to January 21, 2022)

Figure 2: Value of 1 USD investments for VOO (dark blue), Bitcoin (light blue), the best-performing Gaussian-DCC portfolio

(green), the best-performing t-DCC portfolio (red), and the 10 best-performing score-driven portfolios (black).
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A. Marginal distribution for VOO B. Marginal distribution for Bitcoin

y-axis: 1 VOO; 2 Bitcoin; 3 AR-normal-GARCH (DCC); y-axis: 1 VOO; 2 Bitcoin; 3 AR-normal-GARCH (DCC);

4 AR-t-GARCH (DCC); 5 AR-t-GARCH (copula); 4 AR-t-GARCH (DCC); 5 AR-t-GARCH (copula);

6 QAR-Beta-t-EGARCH; 7 QAR-Beta-Gen-t-EGARCH 6 QAR-Beta-t-EGARCH; 7 QAR-Beta-Gen-t-EGARCH

C. Association between VOO and Bitcoin D. Objective function of portfolio optimization

y-axis: 1 VOO; 2 Bitcoin; 3 normal-DCC; 4 t-DCC; y-axis: 1 VOO; 2 Bitcoin; 3 Minimum-variance;

5 Clayton; 6 rotated Clayton; 7 Gumbel; 4 Sharpe ratio; 5 Utility (RA=1); 6 Utility (RA=4)

8 rotated Gumbel; 9 Student’s t

E. Updating frequency of portfolio weights

y-axis: 1 VOO; 2 Bitcoin; 3 weekly; 4 monthly;

5 quarterly; 6 semi-annual; 7 annual

Figure 3: Values of a 1 USD investment on January 21, 2022 (x-axis) for VOO, Bitcoin, 20 normal-DCC portfolios, 20 t-DCC

portfolios, and 900 score-driven portfolios, for the full investment period of March 21, 2018 to January 21, 2022.
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A. Marginal distribution for VOO B. Marginal distribution for Bitcoin

y-axis: 1 VOO; 2 Bitcoin; 3 AR-normal-GARCH (DCC); y-axis: 1 VOO; 2 Bitcoin; 3 AR-normal-GARCH (DCC);

4 AR-t-GARCH (DCC); 5 AR-t-GARCH (copula); 4 AR-t-GARCH (DCC); 5 AR-t-GARCH (copula);

6 QAR-Beta-t-EGARCH; 7 QAR-Beta-Gen-t-EGARCH 6 QAR-Beta-t-EGARCH; 7 QAR-Beta-Gen-t-EGARCH

C. Association between VOO and Bitcoin D. Objective function of portfolio optimization

y-axis: 1 VOO; 2 Bitcoin; 3 normal-DCC; 4 t-DCC; y-axis: 1 VOO; 2 Bitcoin; 3 Minimum-variance;

5 Clayton; 6 rotated Clayton; 7 Gumbel; 4 Sharpe ratio; 5 Utility (RA=1); 6 Utility (RA=4)

8 rotated Gumbel; 9 Student’s t

E. Updating frequency of portfolio weights

y-axis: 1 VOO; 2 Bitcoin; 3 weekly; 4 monthly;

5 quarterly; 6 semi-annual; 7 annual

Figure 4: Values of a 1 USD investment on January 21, 2022 (x-axis) for VOO, Bitcoin, 20 normal-DCC portfolios, 20 t-DCC

portfolios, and 900 score-driven portfolios, for the COVID-19 investment period of February 24, 2020 to January 21, 2022.
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