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MotivationMotivationMotivationMotivation
The main interest of this paper is to suggest new dynamic score-
driven models for measuring the relationships between R&D 
expenses and patent application activity.

There is an extensive body of literature on this issue (e.g., 
Hausman, Hall and Griliches, 1984; Blundell, Griffith and 
Windmeijer, 2002; Wooldridge, 2005; and many more). 

All these works suggest different specifications and use different 
estimation methods to identify R&D-patent relationships.
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MotivationMotivationMotivationMotivation
Recently, score-driven dynamic econometric models appeared. 

This family of models is named dynamic conditional score (DCS) 
(Harvey and Chakravarty, 2008; Harvey, 2013) or generalized 
autoregressive score (GAS) models (Creal, Koopman and Lucas, 2008).

These are observation-driven models that can be relatively simply 
estimated, typically they fit well to data, and for many DCS model the 
asymptotic properties of maximum likelihood estimator are derived.

Different DCS time-series models were suggested for location, scale 
and association (Harvey, 2013). For count data, however, there is only 
a suggestion in Harvey (2013, Ch. 5.11).
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ContributionContributionContributionContribution
We suggest a new class of score-driven patent count panel data 
models, and investigate if the performance of these models is 
superior to previous patent count panel data models of the 
body of literature.
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StructureStructureStructureStructure

1. Data and variables

2. Maximum likelihood estimation (MLE)

3. Quasi maximum likelihood estimation (QMLE)

4. Competing count panel data models

5. Model diagnostics and results

6. References
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Data and variablesData and variablesData and variablesData and variables
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Panel dataPanel dataPanel dataPanel data
We use the U.S. patent and firm specific variable dataset of 
Blazsek and Escribano (2010 JoE, 2016 JoE).

This panel includes firm level annual data of 4476 U.S. 
companies for period 1979 to 2000.

Variables in this panel are indexed by firm � = 1, … , � and year 
� = 1, … , �.
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Observable variablesObservable variablesObservable variablesObservable variables
	
� : patent application count for firm � in year �

�
� : log of inflation-adjusted R&D expenditure

�
 : hi-tech dummy, it takes the value one for drug, computer, 
scientific instrument, chemical and electronic components 
industries, and zero otherwise

�
 : firm size, log of the inflation adjusted book value for the 
simple midpoint year
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Observable variablesObservable variablesObservable variablesObservable variables
	
� : patent application count for firm � in year �

This is the dependent variable of the model.

This is a non-negative integer number, hence the econometric 
model to be applied is a non-linear count data model.

In the literature several models were proposed for the 
conditional expectation of 	
�, denoted by λ
�, in order to study 
the determinants of patent application activity.
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Maximum likelihood Maximum likelihood Maximum likelihood Maximum likelihood 
estimationestimationestimationestimation
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HausmanHausmanHausmanHausman, Hall and , Hall and , Hall and , Hall and GrilichesGrilichesGrilichesGriliches (HHG) (HHG) (HHG) (HHG) 
(1984, (1984, (1984, (1984, EconometricaEconometricaEconometricaEconometrica))))

 � 	
�|�
� , �
 = λ
� = exp(�
��) �


�
�� = �� + � � + �! � × �
� + �#�
 + �$�
 + %��
� + ⋯ + %'�
�('

�
�� is used to simplify notation (observable variables)

�
 > 0 represents unobserved and time-constant firm-specific 

effects. �
 captures time-constant omitted variables. 

�
 can be considered for panel data models; which is one of their 
main advantage.
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Assumptions of HHG (1984)Assumptions of HHG (1984)Assumptions of HHG (1984)Assumptions of HHG (1984)
(ML1) 	
�|(�
 , … , �
+ , �
)~Poisson(λ
�). This assumption 
implies strict exogeneity of all explanatory variables conditional 
on �
.

(ML2) λ
� is modelled by the exponential function to ensure 
positivity, i.e. λ
� = exp �
�� �
 = exp �
�� + ln �
 . 
Multiplicative count data model.

(ML3) 	
�|(�
 , … , �
� , �
) and 	
3|(�
 , … , �
3, �
) are 
independent

(ML4) �
 is i.i.d. with Gamma(1, 7) distribution

(C) SZABOLCS BLAZSEK 12



RE MLE and FE MLE of HHG (1984)RE MLE and FE MLE of HHG (1984)RE MLE and FE MLE of HHG (1984)RE MLE and FE MLE of HHG (1984)
Under (ML1), (ML2), (ML3) and (ML4), random effects MLE (RE MLE). 

For RE MLE �
 is independent of �
�.

Under (ML1), (ML2) and (ML3), fixed effects MLE (FE MLE). 

For FE MLE �
 may be associated with �
�.

Hence, FE MLE is more general than RE MLE.
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Disadvantages of MLEDisadvantages of MLEDisadvantages of MLEDisadvantages of MLE
(a) exact conditional distribution is assumed for 
	
�|(�
 , … , �
+ , �
) for both RE MLE and FE MLE

(b) exact distribution is assumed for �
 for RE MLE

(c) strict exogeneity of all explanatory variables is assumed. 

Strict exogeneity implies that (i) lags of 	
� cannot be considered 
as explanatory variables within λ
�; (ii) 	
� cannot have impact 
on future values of any explanatory variables, for example R&D.
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Pooled Patent count data modelsPooled Patent count data modelsPooled Patent count data modelsPooled Patent count data models
We can drop the strict exogeneity assumption by excluding the 
unobserved effects term �
 from the model. 

This is going to permit lags of 	
� as explanatory variables and 
also we can include such explanatory variables (e.g. R&D) for 
which future values (�
�8 ,…, �
+) are influenced by 	
�.

Nevertheless, we will still need the contemporaneous 
exogeneity of explanatory variables.

Of course, dropping �
 from the model is a price that we have to 
pay for dropping the strict exogeneity assumption.
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Pooled Patent count data modelsPooled Patent count data modelsPooled Patent count data modelsPooled Patent count data models
For the remainder, we shall see patent count data models for 
which �
 is excluded. The general name for this kind of panel 
data models is pooled count panel data models.
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Quasi maximum Quasi maximum Quasi maximum Quasi maximum 
likelihood likelihood likelihood likelihood estimationestimationestimationestimation
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QMLE method (QMLE method (QMLE method (QMLE method (GourierouxGourierouxGourierouxGourieroux, , , , MonfortMonfortMonfortMonfort, , , , TrognonTrognonTrognonTrognon, , , , 
GMT, 1984 a, b, GMT, 1984 a, b, GMT, 1984 a, b, GMT, 1984 a, b, EconometricaEconometricaEconometricaEconometrica))))
The assumptions on exact distribution and strict exogeneity question 
the validity of MLE for patent count panel data models.

We use an alternative estimation method that is more robust since it 
does not require assumptions on the exact distribution of 
	
�|(�
 , … , �
+ , �
) and �
. Furthermore, the strict exogeneity 
assumption is also relaxed and lags of 	
� will be permitted as 
explanatory variables within λ
�.

This alternative estimation method is named in the literature     
‘pseudo MLE’ (PMLE) or ‘quasi MLE’ (QMLE).
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GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)
QMLE, similar to MLE, provides parameter estimates by 
maximizing an objective function.

For MLE this objective function is the log of the joint density of 
	
 , … , 	
+ , and it is maximized with respect to the 

parameters. 

MLE involves an assumption about the conditional distribution 
of the dependent variable.
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GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)
GMT (1984 a, b) suggests objective functions to be maximized 
however it is not needed to assume a specific conditional 
distribution for the dependent variable.

The objective functions of QMLE are log density functions of a 
certain class of probability distributions, named the linear 
exponential family (LEF). 

LEF density functions have a certain functional form.
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GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)
Some examples of discrete and continuous LEF distributions:

A) 9~Binomial(	, :) distribution, with given 	

B) 9~Poisson(λ) distribution

C) 9~Negative binomial(7, λ) distribution, with given 7

D) 9~Normal(�, ;!) distribution, with given ;

E) (9 , … , 9<)~Multinomial(	, : , … , :<) distribution, with given 	

F) (9 , … , 9<)~Multivariate normal (�, Σ), with given Σ
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GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)GMT (1984 a, b)
For each of the LEF there is the corresponding objective function 
to be maximized. This objective function is given by the log joint 
density of the LEF distribution. 

However, this is a pseudo log likelihood, since we do not assume 
that data are in fact generated from the LEF, i.e. QMLE uses an 
auxiliary objective function in order to estimate parameters.

GMT (1984 a, b) show that the QMLE method provides 
consistent parameter estimates.

The QMLE method is a special case of the more general            
M-estimator (see Wooldridge, 2002, Ch. 12).
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QMLE for count data (Wooldridge, 1997a)QMLE for count data (Wooldridge, 1997a)QMLE for count data (Wooldridge, 1997a)QMLE for count data (Wooldridge, 1997a)
Wooldridge (1997a) uses the QMLE method for cross section 
and panel count data. QMLE assumption:

(QMLE1) E 	
� �
 , … , �
� = λ
� where �
� can be any observed 
variable. Correct specification of the conditional expectation. 

(QMLE1) also means that contemporaneous explanatory 
variables are exogenous.

Result of Wooldridge (1997a) that is related to GMT (1984 a, b):

Under (QMLE1), the pooled Poisson QMLE and also the pooled 
negative binomial QMLE provide consistent estimates of 
parameters; since both distributions are LEF.
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QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, 1997a)1997a)1997a)1997a)
The pooled negative binomial QMLE is more efficient than the 
pooled Poisson QMLE since the negative binomial QMLE 
objective function has an additional parameter (7), hence it is 
more flexible.

However, the negative binomial QMLE assumes that 7 is already 
given.

Thus, for all patent count data models we apply the two-step 
negative binomial QMLE procedure suggested by Wooldridge 
(1997a). First step: estimate 7. Second step: use 7? in the 
negative binomial QMLE objective function to estimate the 
remaining parameters.
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QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, QMLE for count data (Wooldridge, 1997a)1997a)1997a)1997a)
This two-step negative binomial QMLE estimation procedure is 
directly related to the two-step quasi-generalized pseudo MLE 
(QGPMLE) procedure suggested by GMT (1984 a,b) in which the 
given parameter of the LEF is estimated in a first step, and 
remaining parameters are estimated in the second step.
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GMM estimationGMM estimationGMM estimationGMM estimation
In the body of literature of count data models there exists an 
alternative estimation method that drops the strict exogeneity 
assumption: generalized method of moments, GMM (Hansen, 
1982). (For count data: Chamberlain, 1992; Wooldridge, 1997b.)

In these models �
 is also included, and it may be correlated with the 
explanatory variables (i.e. it is a fixed effect, FE).

We had (i) computation problems (slow iterations); (ii) for the DCS 
count data models suggested in this paper �
 cannot be considered 
as it is unobservable. Thus, we do not use GMM.
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Competing patent count Competing patent count Competing patent count Competing patent count 
data modelsdata modelsdata modelsdata models
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Pooled Pooled Pooled Pooled HausmanHausmanHausmanHausman, Hall and , Hall and , Hall and , Hall and GrilichesGrilichesGrilichesGriliches (1984)(1984)(1984)(1984)
finite distributed lag (FDL) modelfinite distributed lag (FDL) modelfinite distributed lag (FDL) modelfinite distributed lag (FDL) model

 � 	
�|�
� = λ
� = exp(�
��)

�
�� = �� + � � + �! � × �
� + �#�
 + �$�
 + %��
� + ⋯ + %'�
�('

Multiplicative count data model

(C) SZABOLCS BLAZSEK 28



Pooled Wooldridge (2005) Pooled Wooldridge (2005) Pooled Wooldridge (2005) Pooled Wooldridge (2005) 
exponential feedback model (EFM)exponential feedback model (EFM)exponential feedback model (EFM)exponential feedback model (EFM)

 � 	
�|�
� = λ
� = exp �
�� + �'	
 + @ 	
�( 

This model considers AR(1) dynamics and also controls for the 
initial condition of the dynamic process (�'	
 ).

Multiplicative count data model
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Pooled Blundell, Griffith and Pooled Blundell, Griffith and Pooled Blundell, Griffith and Pooled Blundell, Griffith and WindmeijerWindmeijerWindmeijerWindmeijer ((((2222000000002222))))    
linear feedback model (LFM)linear feedback model (LFM)linear feedback model (LFM)linear feedback model (LFM)

 � 	
�|�
� = λ
� = @ 	
�( + exp (9
��A) with 0 < @ < 1

9
��A = �
�� + �'	
 

Additive count data model
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Multiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson model
Davis, Dunsmuir and Streett (2003, 2005), and Harvey (2013) suggest 
MLE for a dynamic model for time-series count data, updated by the 
score of the Poisson distribution. 

Poisson is member of LEF, hence QMLE can also be used.

The score of 	
� is computed with respect to λ
� as follows:

 C 	
� �
 , … , �
� =
DEF ((GHI)GHI

JHI

KHI!
(density of Poisson)

MNOP 	
� �
 , … , �
�

MGHI
=

KHI

GHI
− 1 ≡ S
� > −1 (conditional score)
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Multiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson model
Davis, Dunsmuir and Streett (2003, 2005); Harvey (2013) suggest 
dynamic models for count data in which only lags of S
� update the 
dynamic equation (i.e. MA-type terms), but they do not consider 
AR terms.

We extend their dynamic score-driven count data model and (i) we 
consider AR terms too in the dynamic equation; (ii) we suggest DCS 
count data models for panel data instead of time-series; (iii) we 
estimate the count data model by QMLE and not by MLE, hence 
Poisson distribution is not assumed for 	
� �
 , … , �
� .
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Multiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson modelMultiplicative DCS (MDCS) Poisson model
 � 	
�|�
�  = λ
� = exp (Ψ
� + 9
��A)

MDCS-QMA(U) (Davis, Dunsmuir and Streett 2003, 2005; Harvey 2013):

Ψ
�8 = ��S
� + ⋯ + �VS
�(V

MDCS-QAR(1):

Ψ
�8 = @ Ψ
� + ��S
�

MDCS-QARMA(:, U):

Ψ
�8 = @ Ψ
� + ⋯ @WΨ
�(W + ��S
� + ⋯ + �VS
�(V
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Additive Additive Additive Additive DCS DCS DCS DCS (ADCS) Poisson (ADCS) Poisson (ADCS) Poisson (ADCS) Poisson modelmodelmodelmodel
 � 	
�|�
� = λ
� = Ψ
� + exp (9
��A)

ADCS-QMA(U):

Ψ
�8 = �∗ + ��S
� + ⋯ + �VS
�(V where �∗ = �� + ⋯ + �V

ADCS-QAR(1):

Ψ
�8 = �� + @ Ψ
� + ��S
�

ADCS-QARMA(:, U):

Ψ
�8 = @ Ψ
� + ⋯ @WΨ
�(W + ��S
� + ⋯ + �VS
�(V where 
�∗ = �� + ⋯ + �V
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Diagnostics and resultsDiagnostics and resultsDiagnostics and resultsDiagnostics and results
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Diagnostics and resultsDiagnostics and resultsDiagnostics and resultsDiagnostics and results
Table 1 and 2 show the two-step negative binomial QMLE 
estimation results. (See Tables 1 and 2.)

Table 3 Panels A and B, shows test results on contemporaneous 
exogeneity of R&D expenses; needed for the pooled negative 
binomial QMLE.

Table 3 Panels C and D, shows mean R-squared model fit metrics 
for the panel (Cameron and Windmeijer, 1996). An R-squared is 
computed for each year, then averaged over � = 1, … , �
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Pearson RPearson RPearson RPearson R----squared over squared over squared over squared over � = 1,… , � for models for models for models for models 
where contemporaneous R&D is exogenouswhere contemporaneous R&D is exogenouswhere contemporaneous R&D is exogenouswhere contemporaneous R&D is exogenous
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Deviance residual RDeviance residual RDeviance residual RDeviance residual R----squared squared squared squared over over over over � = 1,… , � for for for for 
models where contemporaneous R&D is exogenousmodels where contemporaneous R&D is exogenousmodels where contemporaneous R&D is exogenousmodels where contemporaneous R&D is exogenous
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