Two-bidder all-pay auctions with interdependent valuations, including the highly competitive case

> Lucas Rentschler Universidad Francisco Marroquín *and* Theodore L. Turocy University of East Anglia

> > March 2016

Idea	Model	Equilibrium	Examples	Summary
00	0000000	0000000000	0000000	0

Idea

Idea	Model	Equilibrium	Examples	Summary
●0	00000000	0000000000	00000000	O
Motivatio	n			

- The study of contests games in which participants irrevocably expend resources in the pursuit of (a) prize(s) – is recently quite an active field.
- + Applications: R&D, electoral competition, lobbying, international relations and war, sports ...
- + A technical challenge: When players ex ante expect competition to be strong, equilibrium can be difficult to identify or characterise.

Idea	Model	Equilibrium	Examples	Summary
o●	00000000	0000000000	00000000	O
Abstract				

- + Two-bidder all-pay auctions with discrete signals and interdependent valuations.
- + We do not require any monotonicity conditions.
- + This allows us to analyse "highly competitive" environments.
- + Equilibria can be non-monotonic with rich, complex structure.
- + We provide an algorithm that can construct all equilibria.

Idea	Model	Equilibrium	Examples	Summary
00				

Model

Idea	Model	Equilibrium	Examples	Summary
oo	•0000000	0000000000	00000000	0
Basic setu	ıp			

- + Two (ex-ante symmetric) bidders competing for a single indivisible object.
- + Each bidder receives a signal from a finite set $S = \{s_k\}$.
- + If one bidder receives s_k , the probability the other bidder gets signal s_l is $h_{l|k}$.
- + The expected value to a bidder of the object, conditional on the bidder getting s_k and the other bidder s_l is $V_{k,l}$.
- + Bidders simultaneously submit bids, which they pay irrespective of the outcome.
- + The bidder submitting the higher bid wins the object; ties are broken at random.

- Case of commonly-known common-value is a special case of Baye et al (1996).
 - + Let the common value be V
 - + Then, equilibrium is uniform randomisation over [0, V].

Idea	Model	Equilibrium	Examples	Summary
00	oo●ooooo	0000000000	00000000	O
Siegel 201	14			

- Siegel (2014) assumes a monotonicity condition (similar to Krishna-Morgan 1997)
- + If $h_{l|k}V_{k,l}$ is monotonic in s_l for all s_k , then no two signals are "active" at the same bid.
- + In equilibrium, signals sort. In the symmetric case,
 - + Each signal randomises over a different interval of bids
 - + On each interval, the bidder randomises uniformly as in Baye et al.

00	0000000	0000000000	0000000	
Mindi	ng the gap			

- + What does it mean for $h_{l|k}V_{k,l}$ to be monotonic in s_l for all s_k ?
- + Siegel: this is a condition which says that "signals are not too affiliated."
- + But this would rule out, for example, some interesting perturbations of Baye et al setting.
- + Our contribution is that we fill this gap.

- + Consider the case of pure common values, with *K* possible values $v_k = \frac{k}{K}$.
- + Conditional on value v_k , each bidder gets an independent signal, which is s_k with probability p_c . Other signals $s_l \neq s_k$ occur with probability p_w , with $p_c + (K-1)p_w = 1$.
- + Monotonicity condition holds iff $\frac{p_w}{p_c} > \frac{v_k}{v_{k+1}}$ for all k, that is, if signals are not too accurate.

うつう 山 へ 山 マ へ 山 マ く 口 マ

- + Pick K = 5 and $p_C = 0.21$.
- + Then the Krishna-Morgan-Siegel monotonicity condition is satisfied.
- + Signals are sorted in equilibrium.

ess

- + Pure common values, with *K* possible values $v_k = \frac{k}{K}$.
- + Conditional on value v_k , each bidder gets an independent signal, which can be s_{k-1} or s_k with equal probability.
- + A discretised version of models where the signals are on $[v \delta, v + \delta]$ (e.g. Casari et al 2007 for first-price auctions).
- + Monotonicity condition does not hold for any choice of *K*.

 This is a the structure of the support of the equilibria in this model, with 8 values and 9 signals:

cbess

э

・ロト ・ 雪 ト ・ ヨ ト

Idea	Model	Equilibrium	Examples	Summary

Equilibrium

Idea	Model	Equilibrium	Examples	Summary
00	00000000	●000000000	0000000	O
Equilib	rium			

Theorem

A Nash equilibrium exists, in which there are no mass points.

- + Existence is not immediate because of the discontinuity in the payoff function at the possibility of a tie.
- + Proof idea: Consider perturbed games in which a bid of b is modified by noise $[b \varepsilon, b + \varepsilon]$.
- + Construct a convergent sequence of equilibria as $\varepsilon \downarrow 0$.
- The limit behaviour strategy cannot have mass points (intuition: because if there is too much probability mass in an interval, a bidder will always want to deviate upwards to a higher bid).

Idea	Model	Equilibrium	Examples	Summary
oo	0000000	o●ooooooooo	0000000	O
Intervals				

- + Fix some equilibrium behaviour strategy profile π , with π_k being the strategy conditional on signal s_k .
- + Let $u_k(b|\pi)$ be the payoff to bidding *b* against π conditional on signal s_k .
- + Because π has no mass points, $u_k(\cdot|\pi)$ is a continuous function.
- Write the set of best response bids can be written as the union of a collection of disjoint closed intervals.

Idea	Model	Equilibrium	Examples	Summary
oo	0000000	0000000000	0000000	O
Intervals				

- + Any equilibrium π therefore divides up the set of possible bids into a collection of intervals $\{\mathcal{I}_i\}$.
- + Associated with each interval \mathcal{I}_j is a subset $A_j \subseteq S$ of signals, such that any bid in \mathcal{I}_j is a best response for any signal in A_j .
- + We can say things about:
 - + Which subsets of *S* can possibly appear in an equilibrium;
 - + The *order* in which those subsets can appear.

+ If bids in *b* in some interval \mathcal{I} are all best responses for a signal s_k , it must be that

$$\sum_{s_l\in S}h_{l|k}V_{k,l}\pi_l=1 \;\; orall s_k\in A,\; orall b\in \mathcal{I}.$$

- + If this linear system of equations has a solution with $\pi_k \ge 0$ for all, we say that the set of signals A is an **admissible active set**.
- (Technical aside: Solutions with non-constant densities on an interval are possible. But if a solution exists, a constant-density solution exists; focus on those for the moment.)

(日) (四) (日) (日) (日) (日)

Admis	sihla activa sa	te. Observation	c	
		000000000		
Idea	Model	Equilibrium	Examples	Summary

- + The admissibility of an active set is independent of the bid level *b*.
- Associated with an admissible active set is a set of solutions for the length of the corresponding interval, and the probability mass each signal's strategy assigns to that interval.
- + This set is the solution of a set of linear equations therefore computationally straightforward.

+ Active sets cannot appear in arbitrary order in an equilibrium.

+ Consider two intervals \mathcal{I}_j and \mathcal{I}_{j+1} .

- + Suppose a signal $s_k \in \mathcal{I}_j$ but $s_k \notin \mathcal{I}_{j+1}$. Then, the payoff to s_k on \mathcal{I}_{j+1} must be decreasing.
- + Suppose a signal $s_k \notin \mathcal{I}_{j+1}$ but $s_k \in \mathcal{I}_{j+1}$. Then, the payoff to s_k on \mathcal{I}_j must be increasing.

cbess

+ These constraints then induce a relation \succ between any two active sets A and A', with $A \succ A'$ if, in an equilibrium A can be active on some interval \mathcal{I}_j and A'on the next (lower) interval \mathcal{I}_{j+1} .

Idea	Model	Equilibrium	Examples	Summary
00	00000000	00000000000	00000000	O
Orderi	ing active sets			

- + The relation \succ induces a graph over admissible active sets.
- Any equilibrium then corresponds to some path through the graph induced by ≻.
- + The KMS monotonicity condition implies admissible active sets are singletons, and there is a unique path through the graph.
- We show when the KMS monotonicity condition does not hold, then this graph can become quite complex.

Idea	Model	Equilibrium	Examples	Summary
oo	0000000	00000000000	00000000	O
Ordering a	active sets: Ex	ample		

+ Take the "value plus noise" model, where there are K = 3 possible values (and therefore 4 signals).

Orderin	active sets	: Constraints		
Idea	Model	Equilibrium	Examples	Summary
oo	0000000	00000000000	00000000	O

- + A signal must receive the same payoff on all intervals on which it bids.
- + If there is a gap in a signal's support, the net payoff change over that interval of bids must be zero.
- + This adds an additional linear constraint on the lengths of the intervals involved in such a gap.

Idea	Model	Equilibrium	Examples	Summary
oo	00000000	00000000000	00000000	O
The const	ruction			

To construct an equilibrium, then:

- + Pick a path through the graph induced by \succ
- + For each active set on the path, construct the linear equations supporting that active set.
- For each signal, for each gap in that signal's support, construct the linear equation ensuring the net payoff on the gap is zero.
- + Solve this set of linear equations.
- If the resulting solution has sensible densities, interval lengths, and gives all bidders a non-negative payoff, it's an equilibrium.

(日本・1日本・1日本・1日本・1日本)

Idea	Model	Equilibrium	Examples	Summary
00	00000000	000000000●	00000000	O
Complexit	ty			

- + The algorithm of Siegel (2014) is a special case of ours.
- + Our algorithm can be extended to non-symmetric games; but we will see things are quite complex enough as it is!
- + Where Siegel's algorithm applies, the graph of ≻ amounts to a single path.
- In our algorithm, a path corresponds to a (rather low-dimensional) system of linear equations; not hard to solve on its own.

 The complexity lies in the massive number of paths through the graph of ≻, which in general cannot be pruned efficiently. Model

Equilibrium 00000000000 Examples

Summary O

Examples

Idea	Model	Equilibrium	Examples	Summary
oo	00000000	0000000000		O
Examples				

- + I'll now talk about the "value or noise" and "value plus noise" examples in a bit more detail.
- + The full paper has a few other examples, including
 - + Examples with interdependent (rather than pure common) values;
 - + Examples with multiple equilibrium supports, corresponding to different paths through the graph of ≻;
 - + Examples where the the maximum bid submitted in equilibrium is not monotonic in the posterior expected value of the object.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Evamn	lo: "Value or	noiso"		
			•••••	
Idea	Model	Equilibrium	Examples	Summary

- + Pure common values, with *K* possible values $v_k = \frac{k}{K}$.
- + Conditional on value v_k , each bidder gets an independent signal, which is s_k with probability p_c . Other signals $s_l \neq s_k$ occur with probability p_w , with $p_c + (K-1)p_w = 1$.
- + Monotonicity condition holds iff $\frac{p_w}{p_c} > \frac{v_k}{v_{k+1}}$ for all k, that is, if signals are not too accurate.

"Value or noise": Admissible active sets

 $p_c = 0.21$ $p_c = 0.45$ $p_c = 0.99$

Idea	Model	Equilibrium	Examples	Summary
00	00000000	0000000000	0000000	O

"Value or noise": Equilibrium support

Idea Model Equilibrium Examples Summary 00 00000000 000000000 0 0

"Value or noise": Equilibrium selection

- + In the limit as $p_c = p_w$, this game amounts to the all-pay auction with commonly-known values. (Baye et al)
- + Equilibrium in Baye et al is uniform randomisation between 0 and the expected value of the object.
- + However, the limiting equilibrium in the value-or-noise model is separating.
- Note that the separating equilibrium is an equilibrium of the Baye et al model with informationless signals; the informationless signal can still serve as a "coordination" device across different bidder signals.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

This is a counterintuitive selection result.
 (Counterintuitive to us at least.)

Idea	Model	Equilibrium	Examples	Summary
00	00000000	0000000000	0000000	O
"Value plu	ıs noise"			

+ Recall the schematic diagram of the structure of the equilibrium in this model, with 8 values and 9 signals:

⁺cbess

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Idea	Model		Eq1	Equilibrium			Examples		O				
00	00000000		00	00000000000			00000000		O				
// T T T						_				•		•	

Value plus noise": Characterisation of equilibrium

- + We can show that equilibrium in this game necessarily has the same qualitative structure of diagonal "bands" for any *K*.
- + Note that if some signal s_k is inactive, then the equilibrium conditions for signals s_{k-1} and below are independent of those of signals s_{k+1} and above.
- We therefore can decompose active sets into isolated groups of signals which are active, and analyse those isolated groups separately.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea 00	Model	Equilibrium	Examples	Summary O

"Value plus noise": Characterisation of equilbrium

Theorem

An isolated group in any admissible active set falls into these categories:

- 1 Singleton signals;
- Even-parity groups of adjacent interior signals (i.e., excluding s₀ and s_K);
- **3** All signals from s_0 to s_k for any $1 \le k \le K$.

+ Fun aside: Proof of (2) is done by Farkas' Lemma.

・ロット 御マ キョット キョン

"Value plu	ıs noise": Cha	aracterisation of	f equilibrium	
Idea	Model	Equilibrium	Examples	Summary
00	0000000	0000000000	0000000	O

Theorem

The active set consisting of all signals is always admissible, and always admits a multiplicity of solutions. The set of admissible densities supporting the active set converges to a point as $K \to \infty$, with $\pi_0 = \ln 2$.

- + That is, equilibrium is not unique.
- However, for examples we have investigated, equilibrium is unique up to the choice of randomisation densities on the interval just above a bid of zero, on which all signals are active.

・ ロ ト ・ 何 ト ・ ヨ ト ・ ヨ ト

Idea	Model	Equilibrium	Examples	Summary
00	0000000	0000000000	0000000	0

Summary

Idea	Model	Equilibrium	Examples	Summary
00	00000000	0000000000	00000000	•
Abstract				

- + Two-bidder all-pay auctions with discrete signals and interdependent valuations.
- + We do not require any monotonicity conditions.
- + This allows us to analyse "highly competitive" environments.
- + Equilibria can be non-monotonic with rich, complex structure.
- + We provide an algorithm that can construct all equilibria.

