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Motivation

2(C) SZABOLCS BLAZSEK, HELMUTH CHAVEZ, CARLOS MENDEZ



Standard financial time series modelStandard financial time series modelStandard financial time series modelStandard financial time series model
(Box and Jenkins, 1970; (Box and Jenkins, 1970; (Box and Jenkins, 1970; (Box and Jenkins, 1970; BollerslevBollerslevBollerslevBollerslev, 1987), 1987), 1987), 1987)
ARMA(1,1) plus t-GARCH(1,1):

�� = �� + �� = �� + λ��� where ��~
(ν) i.i.d.

���� = � + ��� + ��� = � + ��� + � λ���

λ��� = � + �λ� + � ��
� = � + �λ� + �λ� ��

�

�� represents the new information on asset value arriving to the 
market on day t.

This model updates �� (expected return) and λ� (volatility) by a 
transformation of �� (see the equations).
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Dynamic conditional score modelDynamic conditional score modelDynamic conditional score modelDynamic conditional score model
(Harvey, 2013; Harvey and Chakravarty, 2008)(Harvey, 2013; Harvey and Chakravarty, 2008)(Harvey, 2013; Harvey and Chakravarty, 2008)(Harvey, 2013; Harvey and Chakravarty, 2008)
QAR(1) plus Beta-t-EGARCH(1,1):

�� = �� + �� = �� + exp (λ�)�� where ��~
(ν) i.i.d.

���� = � + ��� + �(�

λ��� = � + �λ� + �)�

where (� and )� are nonlinear transformations of ��.

(� and )� update expected return and volatility, respectively.
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Dynamic conditional score modelDynamic conditional score modelDynamic conditional score modelDynamic conditional score model
(� and )� are proportional to the conditional score of the log-
likelihood of ��.

These conditional scores are

 * ln ,(��|��, … , ��0�) /*�� (this is proportional to (�)

 * ln ,(��|��, … , ��0�) /*λ� (this is proportional to )�)
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Dynamic conditional score modelDynamic conditional score modelDynamic conditional score modelDynamic conditional score model
(� and )� are given by

(� = 1 +
34

5

6789 (�:4)

0�

�� =
6789 (:4);4

6�;4
5

)� =
(6��) 34

5

34
5�6789 (�:4)

− 1 =
(6��) ;4

5

;4
5�6

− 1
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Standard model versus DCSStandard model versus DCSStandard model versus DCSStandard model versus DCS
In the standard model, extreme observations (outliers) are not 
discounted in the dynamic equations of expected return and 
volatility.

ARMA involves a linear transformation; it does not discount.

GARCH accentuates the effect of extreme observations, due to 
squaring them.

On the other hand, for DCS extreme observations are 
discounted in the dynamic equations of expected return and 
volatility.
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Standard Standard Standard Standard model versus model versus model versus model versus DCSDCSDCSDCS
If GARCH is persistent (� + � is significant), then it may 
overestimate volatility after an extreme observation, given that 
it is not followed by subsequent extreme observations.

If GARCH is persistent, then it may predict volatility correctly 
after an extreme observation, given that it is followed by 
subsequent extreme observations.
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Standard Standard Standard Standard model versus model versus model versus model versus DCSDCSDCSDCS
If Beta-t-EGARCH is persistent (� is significant), then it may 
underestimate volatility after an extreme observation, given 
that it is followed by subsequent extreme observations.

If Beta-t-EGARCH is persistent, then it may predict volatility 
correctly after an extreme observation, given that it is not 
followed by subsequent extreme observations.

(Q1) Which model predicts better stock returns?
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Standard model versus DCSStandard model versus DCSStandard model versus DCSStandard model versus DCS
In practice investors update the parameters of forecasting 
models of financial asset prices, by re-estimating them for the 
most recent data available.

The discounting property of DCS and non-discounting property 
of the standard model may imply that DCS models are more 
stable than the standard model.

(Q2) Is DCS a more stable model than the standard model?
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Data
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DatasetDatasetDatasetDataset
We use data on the S&P 500 index for period 2nd January 1990 
to 17th June 2015 (= = 6,416 days) (full data window).

We estimate models for the daily percentage change of S&P 
500, denoted by ��.

We estimate the standard and DCS models several times for a 
set of rolling windows.
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DatasetDatasetDatasetDataset
We start with the first 2,500 days of the sample. 

Then, we shift this data window by excluding the first 
observation and adding the new observation. 

We repeat this procedure until the end of the total sample 
period. 

This gives 6,416-2,500=3,916 rolling windows, each with a 
sample size of 2,500. 

For each of these rolling windows, we estimate a different set 
of parameters by the maximum likelihood method.
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Model stabilityModel stabilityModel stabilityModel stability

19(C) SZABOLCS BLAZSEK, HELMUTH CHAVEZ, CARLOS MENDEZ



Model stabilityModel stabilityModel stabilityModel stability
For the parametric standard financial and DCS models, model 
stability is equivalent with parameter stability.

We present the evolution of �, � and the covariance stationarity 
in the variance statistics (� + � and |�| for GARCH and Beta-t-
EGARCH, respectively), in the following figures:
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@ parameter
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A parameter
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covariance stationarity 

in the variance 

(C) SZABOLCS BLAZSEK, HELMUTH CHAVEZ, CARLOS MENDEZ 23



Model stabilityModel stabilityModel stabilityModel stability
These figures suggest that DCS is more stable than the standard 
financial time series model.

This is a very elegant property for DCS.

However, does stability imply superior predictive 
performance?
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Forecast performanceForecast performanceForecast performanceForecast performance
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Forecast performanceForecast performanceForecast performanceForecast performance
We compare the density forecast performance of both models.

We focus on density forecasts (i.e. forecasts of the entire probability 
distribution) instead of point forecasts (i.e. forecasts of the expected 
return), due to the results of Granger and Pesaran (2000a; 2000b).

These authors demonstrate that point or interval forecasts cannot 
provide higher realized economic benefit to decision makers than 
density forecasts. Granger and Pesaran (2000a) also present that 
density forecasts can be applied by different users of forecasts with 
different nonlinear and asymmetric cost functions.
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Forecast performanceForecast performanceForecast performanceForecast performance
For the forecasts performance analysis, we consider the rolling 
data-window approach used for the model stability analysis. 

We divide each rolling data window with 2,500 observations into 
an estimation window with 2,250 observations and a forecast 
evaluation window with 250 observations. 

For each of the estimation windows we estimate the parameters 
of ARMA plus t-GARCH and QAR plus Beta-t-EGARCH, and given 
those parameters we evaluate the log-density of �� for each day 
of the corresponding forecast evaluation window.
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Forecast performanceForecast performanceForecast performanceForecast performance
Let ln ,(��|��, … , ��0�) and ln B(��|��, … , ��0�) denote the 
log-densities for ARMA plus t-GARCH and QAR plus Beta-t-
EGARCH, respectively. 

We represent the out-of-sample density forecast performance 
of ARMA plus t-GARCH with respect to QAR plus Beta-t-
EGARCH by the mean log-density difference metric

C̅E =
�

E
∑ C�

E
�G� =

�

E
∑ ln ,(��|��, … , ��0�) − ln B(��|��, … , ��0�)E

�G�
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Forecast performanceForecast performanceForecast performanceForecast performance
We use the Amisano-Giacomini (2007) (AG) density forecast 

performance test to evaluate the significance of C̅E.

The null hypothesis of the AG test is H C� = 0 for all periods of 
the forecast evaluation window.

AG (2007) demonstrate that


E =
JKL

ML
~N(0,1)

where OE is heteroscedasticity and autocorrelation consistent 

estimator of the asymptotic standard deviation of C̅E.
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Forecast performanceForecast performanceForecast performanceForecast performance
We present the AG test results for all rolling data-windows in 
the following figures:
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Evolution of C̅E for all rolling windows
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Evolution of 
E for all Rolling windows; constant lines: 95% level 

upper and lower critical values of AG test
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Forecast performanceForecast performanceForecast performanceForecast performance
We find that 

(i) the forecast performance of ARMA plus t-GARCH is superior 
to QAR plus Beta-t-EGARCH at the 5% level of significance for 
64.58% of the rolling windows;

(ii) there is no significant difference in the predictive 
performance of these models for 35.39% of the rolling windows; 

(iii) QAR plus Beta-t-EGARCH is superior to ARMA plus t-GARCH 
only for 0.03% of the rolling windows.
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Summary of results for S&P 500Summary of results for S&P 500Summary of results for S&P 500Summary of results for S&P 500
These results suggest that although QAR plus Beta-t-
EGARCH(1,1) is a more stable model than ARMA plus t-
GARCH(1,1), the out-of-sample density forecast 
performance of ARMA plus t-GARCH(1,1) for the investor 
loss function is superior. 

This corresponds to the findings of Hansen and Lunde
(2005) related to the out-of-sample forecast performance of 
GARCH(1,1).
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Robustness analysisRobustness analysisRobustness analysisRobustness analysis
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Robustness analysisRobustness analysisRobustness analysisRobustness analysis
We also study the robustness of model stability and forecast 
performance results obtained for the S&P 500, by repeating the 
same analysis for a Monte Carlo simulation experiment.

We simulate 6,416 values for �� from the following stochastic 
volatility model:
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Robustness analysisRobustness analysisRobustness analysisRobustness analysis
�� = � + ���0� + exp (λ�/2)�� where ��~
(ν) i.i.d.

λ��� = � + �λ� + QR(� where (�~N(0,1) i.i.d.

(Harvey, Ruiz and Shephard, 1994; Harvey and Shephard, 1996)

For the Monte Carlo simulation we use empirically reasonable 
values of parameters: � = 0.001; � = 0.1; ν = 8; � = −0.05; 
� = 0.995; QR = 0.1.
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Robustness analysisRobustness analysisRobustness analysisRobustness analysis
The model stability and forecast performance results for the 
Monte Carlo simulation experiment coincide with the results for 
S&P 500.
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