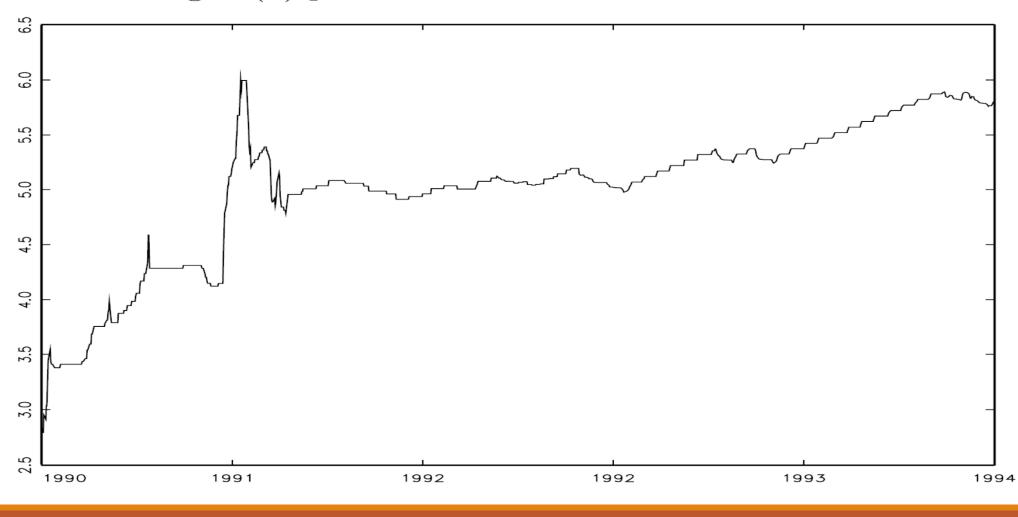
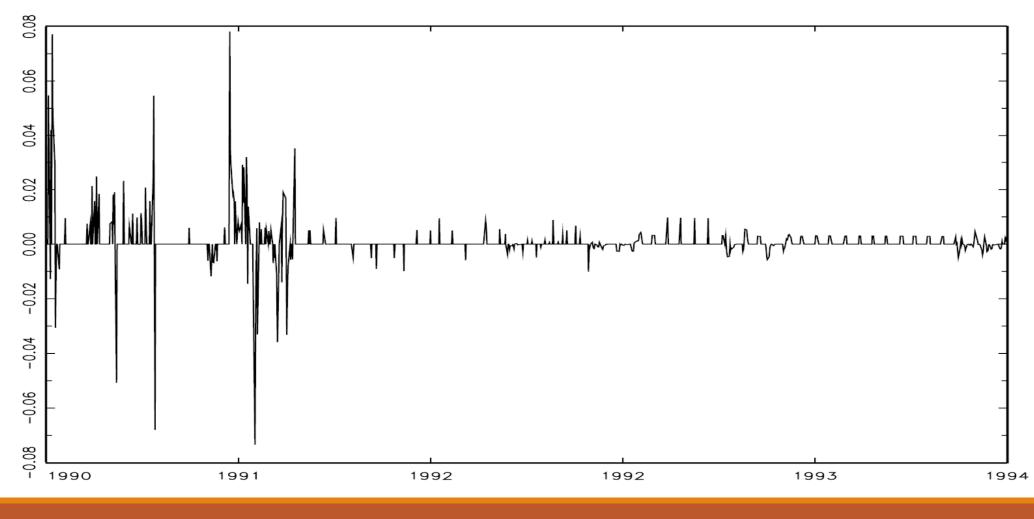
New score-driven models for trimming and Winsorizing: An application for Guatemalan Quetzal to US Dollar

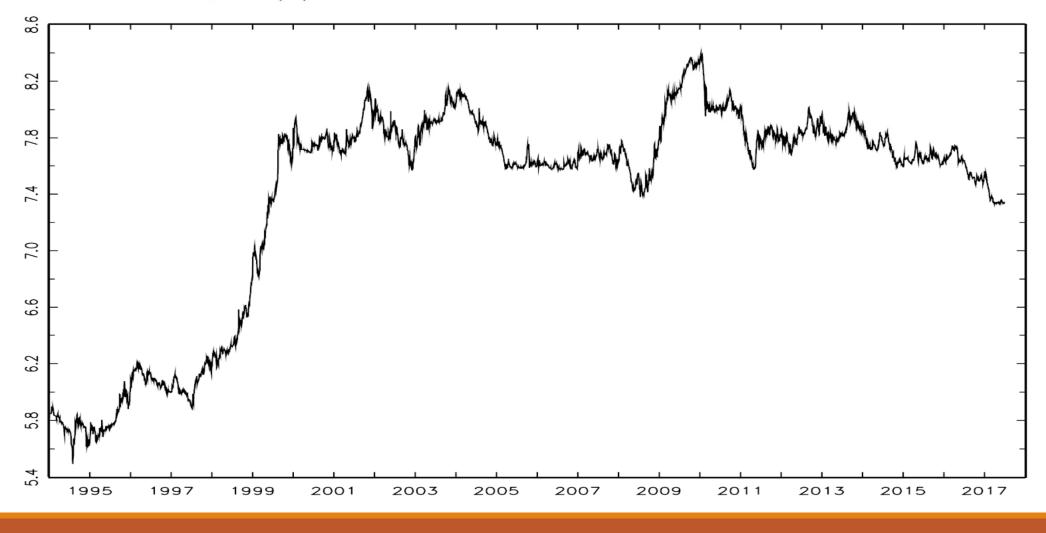
ASTRID AYALA AND SZABOLCS BLAZSEK

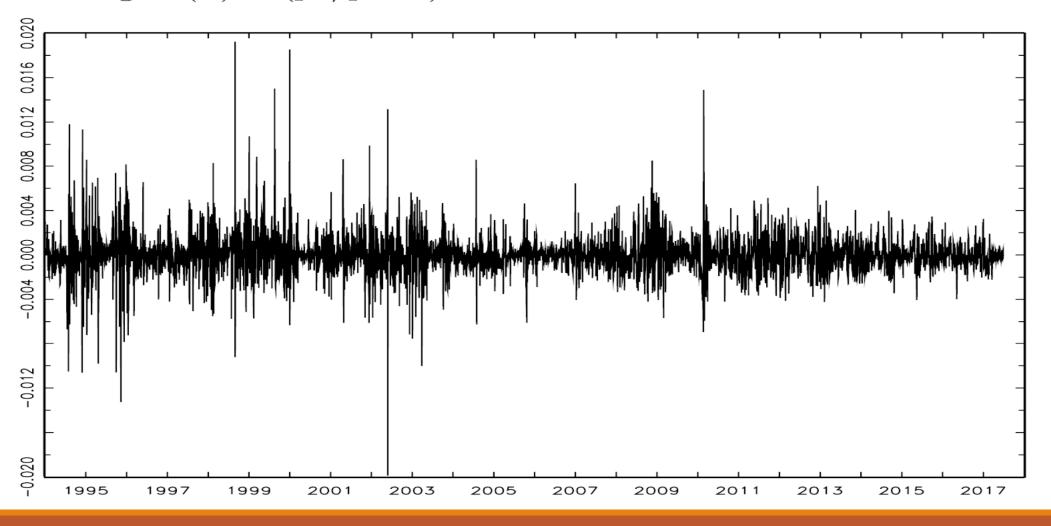
Motivation


The GTQ/USD exchange rate time series involve a stochastic annual seasonality component, which is due to the seasonality of export incomes from agricultural goods.

The main agricultural products exported from Guatemala are:


coffee, sugar, banana and cardamom


For the harvest period of these products, when export income in USD enters Guatemala, the GTQ becomes stronger with respect to USD. After the finish of those exports GTQ becomes weaker with respect to USD.


Statistics	GTQ/USD p_t	$GTQ/USD \ln(p_t/p_{t-1})$	Month	Mean p_t
Start date	4 January 1994	4 January 1994	January	7.4087
End date	30 June 2017	30 June 2017	February	7.3819
Sample size	6,128	6,128	March	7.3590
Minimum	5.4939	-0.0199	April	7.3545
Maximum	8.3948	0.0192	May	7.3411
Average	7.3904	0.0000	June	7.3712
Standard deviation	0.7476	0.0017	July	7.3656
Skewness	-1.2354	0.6494	August	7.3840
Excess kurtosis	0.0049	14.8366	September	7.4312
ADF statistic, constant	-2.1142(0.2391)	$-13.6809^{***}(0.0000)$	October	7.4501
ADF statistic, constant plus trend	-0.8073(0.9637)	NA	November	7.4298
ADF statistic, constant plus quadratic trend	-2.2003(0.7293)	NA	December	7.4126

GESG SEMINAR 21 SEPTEMBER 2017 (C) ASTRID AYALA, SZABOLCS BLAZSEK

Stochastic seasonality

As the figures show, the pattern of seasonality is similar in each year. However, the are some year-specific differences in the seasonality component.

We use econometric models that are able to identify this *stochastic seasonality* for the entire sample period.

Literature

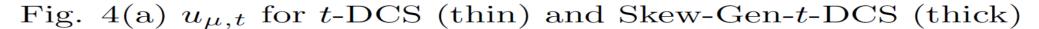
Harvey (2013, Chapter 3.6, Cambridge University Press)

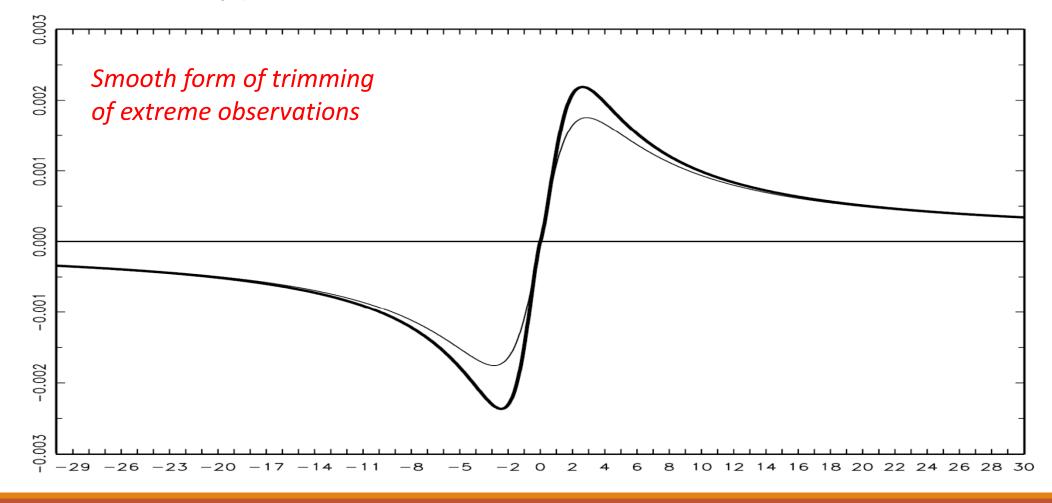
Harvey and Luati (2014, J Am Stat Assoc):

Suggest the *dynamic Student's-t location model* that includes both stochastic local level and stochastic seasonality components.

Volatility is assumed to be constant for this model.

The authors focus on modelling the conditional mean (or location) of the dependent variable.

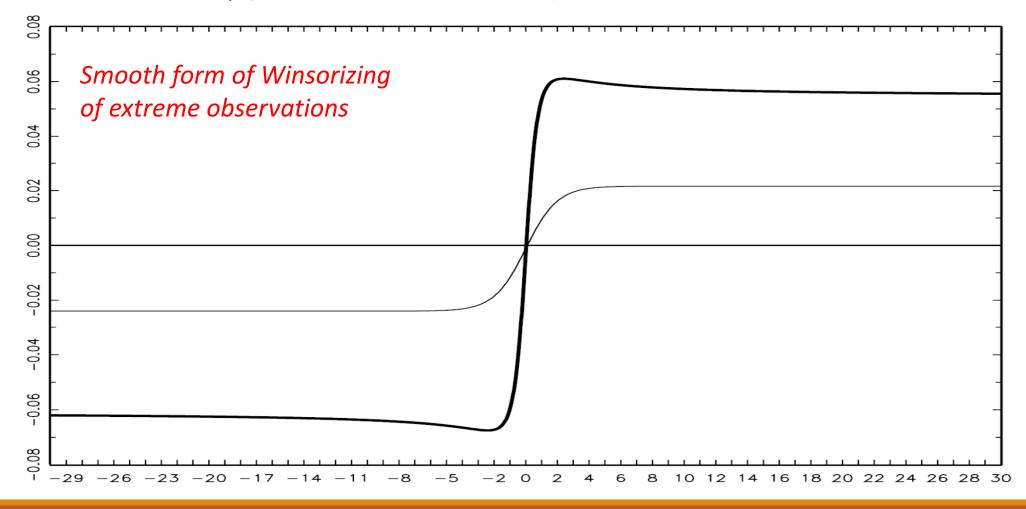

Literature


The dynamic Student's-t location model belongs to the family of *Dynamic Conditional Score (DCS)* models (Harvey 2013, Cambridge University Press).

A property of all DCS models is that extreme observations are discounted when they enter the dynamic equations of the model.

Hence, DCS are robust the extreme values and may provide better estimates of conditional mean and conditional volatility of the dependent variable.

The next figures show how the score function (updating term) depends on the error term (epsilon) that represents the arrival of new information:


Literature

Caivano, Harvey and Luati (2016, SERIEs) suggest the *dynamic EGB2 location model*, which also includes stochastic local level and stochastic seasonality components.

EGB2 (Exponential Generalized Beta distribution of the second kind)

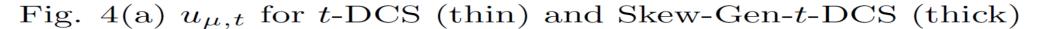
Volatility is assumed to be constant for this model.

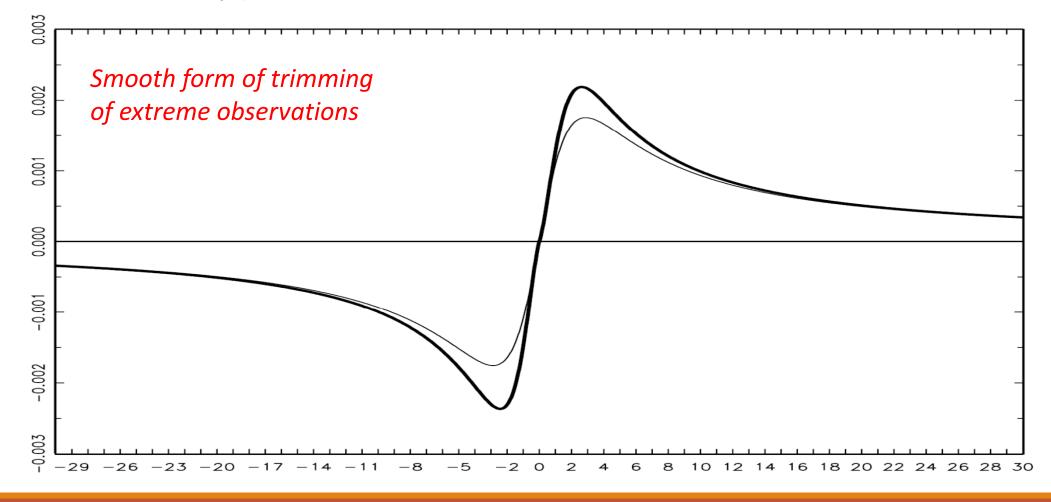
The authors focus on modelling the conditional mean (or location) of the dependent variable.

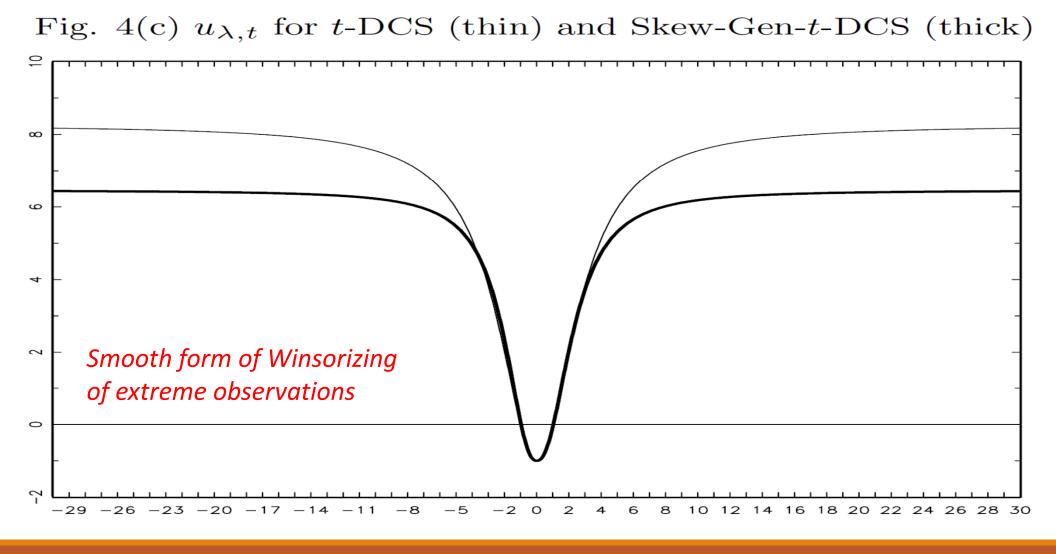
Literature

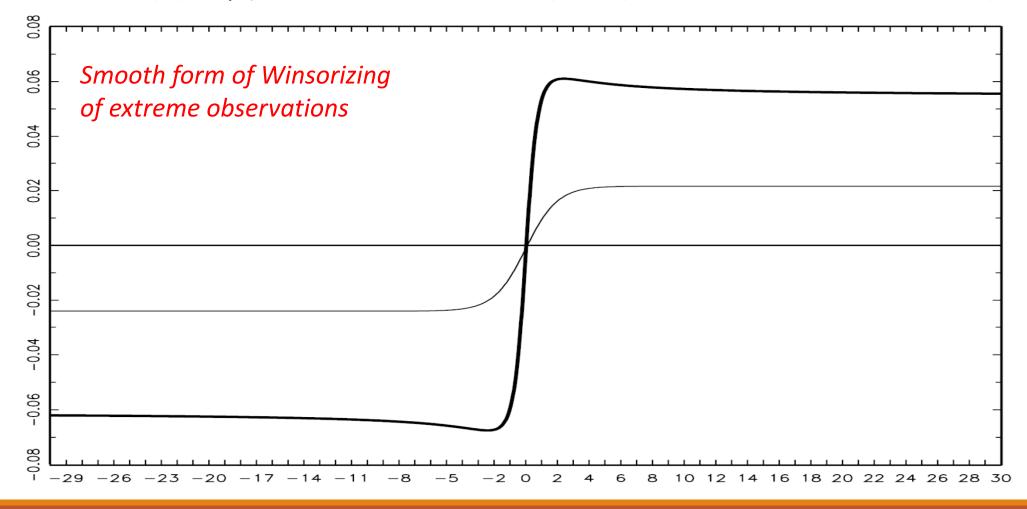
As the figures show, the dynamic t and EGB2 location models transform differently the arriving new information.

Caivano, Harvey and Luati (2016) find that the performance of those models depend on the dataset.

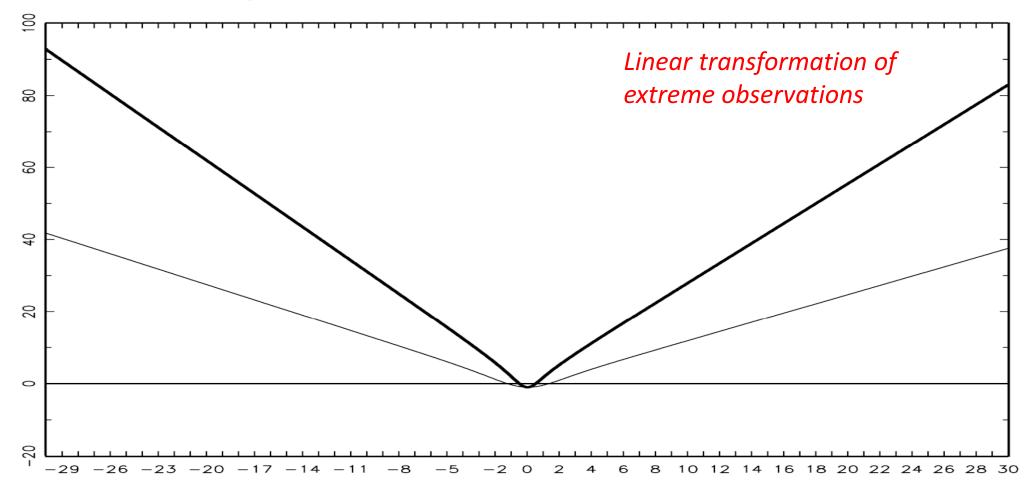

Contributions of the present paper


In the present work, we estimate the dynamic t and EGB2 location models for GTQ/USD data and study their performance.


We also suggest two new dynamic location models: (i) dynamic Skew-Gen-t location model; (ii) dynamic Normal-Inverse Gaussian (NIG) location model.


We consider time-varying volatility for the irregular term:

Beta-t-EGARCH



Econometric formulation

The GTQ/USD rate for day t, p_t , is modelled as:

$$p_t = \mu_t + s_t + v_t = \mu_t + s_t + \exp(\lambda_t)\epsilon_t$$

where μ_t is the *local level component*

- *s*_t is the *stochastic seasonal component*
- v_t is the *irregular component* (with time-varying volatility driven by λ_t)
- ε_t is the *standardized error term* with alternative distributions.

(i) $\varepsilon_t \sim t[0, 1, \exp(\nu) + 2]$ i.i.d. (Student's t-distribution) \rightarrow

dynamic Student's-t location model

Symmetric probability distribution

 $\boldsymbol{\nu}$ influences the tail-heaviness of the distribution

(ii) $\varepsilon_t \sim \text{Skew} - \text{Gen} - t[0,1, \tanh(\tau) \exp(\nu) + 2, \exp(\eta)]$ i.i.d. (Skewed generalized t-distribution) \rightarrow

dynamic Skew-Gen-t location model (NEW)

Asymmetric probability distribution

au influences asymmetry of the distribution

 ν influences tail heaviness of the distribution

 $\boldsymbol{\eta}$ influences peakedness in the center of the distribution

(iii) $\varepsilon_t \sim EGB2[0,1, \exp(\xi), \exp(\zeta)]$ i.i.d. (EGB2 distribution) \rightarrow

dynamic EGB2 location model

Asymmetric probability distribution

 ξ and ζ influence both tail-heaviness and asymmetry of the distribution

(iv) $\varepsilon_t \sim NIG[0,1, \exp(v), \exp(v) \tanh(\eta)]$ i.i.d. (NIG distribution) \rightarrow dynamic NIG location model (NEW)

Asymmetric probability distribution

 ν influences the tail-heaviness of the distribution

 $\boldsymbol{\eta}$ influences the asymmetry of the distribution

Local level and stochastic seasonal

Local level:

 $\mu_t = \mu_{t-1} + \delta u_{\mu,t}$

I(1) model updated by the score function with respect to location

We motivate this by performing the Augmented Dickey-Fuller (1979) (ADF) unit root test for GTQ/USD time series. The unit root null hypothesis is not rejected.

 δ is a time-constant parameter to be estimated.

Statistics	GTQ/USD p_t	$GTQ/USD \ln(p_t/p_{t-1})$	Month	Mean p_t
Start date	4 January 1994	4 January 1994	January	7.4087
End date	30 June 2017	30 June 2017	February	7.3819
Sample size	6,128	6,128	March	7.3590
Minimum	5.4939	-0.0199	April	7.3545
Maximum	8.3948	0.0192	May	7.3411
Average	7.3904	0.0000	June	7.3712
Standard deviation	0.7476	0.0017	July	7.3656
Skewness	-1.2354	0.6494	August	7.3840
Excess kurtosis	0.0049	14.8366	September	7.4312
ADF statistic, constant	-2.1142(0.2391)	$-13.6809^{***}(0.0000)$	October	7.4501
ADF statistic, constant plus trend	-0.8073(0.9637)	NA	November	7.4298
ADF statistic, constant plus quadratic trend	-2.2003(0.7293)	NA	December	7.4126

Local level and stochastic seasonal

Stochastic seasonal:

$$s_t = D'_t \rho_t = (D_{\operatorname{Jan},t}, D_{\operatorname{Feb},t}, \dots, D_{\operatorname{Dec},t})' \rho_t$$

$$\rho_t = \rho_{t-1} + \gamma_t u_{\mu,t}$$

Each element of the 12x1 vector ρ_t is defined as:

$$\gamma_{jt} = \gamma_j$$
 for $D_{jt} = 1$ and $\gamma_{jt} = -\gamma_j/(12-1)$ for $D_{jt} = 0$

where $\gamma_1, \ldots, \gamma_{12}$ are time-constant parameters to be estimated.

Time-varying volatility of the irregular component

Beta-t-EGARCH(1,1):

 $\lambda_t = \omega + \beta \lambda_{t-1} + \alpha u_{\lambda,t-1}$

 ω , α , β are time-constant parameters to be estimated.

We also estimated an extended version of Beta-t-EGARCH(1,1):

Beta-t-EGARCH(1,1) with leverage effects.

However, the leverage effect parameter was not significant.

t-DCS		Skew-Gen- <i>t</i> -DCS		EGB2-DCS		NIG-DCS	
δ	$11.6767^{***}(0.2957)$	δ	$9.6840^{***}(0.2568)$	δ	$0.9985^{***}(0.0116)$	δ	$0.3326^{***}(0.0105)$
$\gamma_{ m Jan}$	$-1.0548^{***}(0.0734)$	$\gamma_{ m Jan}$	$-0.8595^{***}(0.0578)$	$\gamma_{ m Jan}$	$-0.0835^{***}(0.0051)$	$\gamma_{ m Jan}$	$-0.0279^{***}(0.0020)$
$\gamma_{ m Feb}$	$0.4225^{***}(0.0341)$	$\gamma_{ m Feb}$	$0.3582^{***}(0.0284)$	$\gamma_{ m Feb}$	$0.0361^{***}(0.0031)$	$\gamma_{ m Feb}$	$0.0119^{***}(0.0011)$
$\gamma_{ m Mar}$	$-0.6163^{***}(0.0295)$	$\gamma_{ m Mar}$	$-0.5109^{***}(0.0242)$	$\gamma_{ m Mar}$	$-0.0525^{***}(0.0028)$	$\gamma_{ m Mar}$	$-0.0176^{***}(0.0011)$
$\gamma_{ m Apr}$	$-0.3205^{***}(0.0903)$	$\gamma_{ m Apr}$	$-0.3008^{***}(0.0741)$	$\gamma_{ m Apr}$	$-0.0156^{*}(0.0092)$	$\gamma_{ m Apr}$	$-0.0051^{*}(0.0030)$
$\gamma_{ m May}$	$0.8895^{***}(0.0639)$	$\gamma_{ m May}$	$0.7650^{***}(0.0549)$	$\gamma_{ m May}$	$0.0736^{***}(0.0052)$	$\gamma_{ m May}$	$0.0242^{***}(0.0019)$
$\gamma_{ m Jun}$	$1.1123^{***}(0.0656)$	$\gamma_{ m Jun}$	$0.8921^{***}(0.0494)$	$\gamma_{ m Jun}$	$0.0982^{***}(0.0057)$	$\gamma_{ m Jun}$	$0.0326^{***}(0.0022)$
$\gamma_{ m Jul}$	$3.2336^{***}(0.1538)$	$\gamma_{ m Jul}$	$2.8908^{***}(0.1377)$	$\gamma_{ m Jul}$	$0.2633^{***}(0.0114)$	$\gamma_{ m Jul}$	$0.0868^{***}(0.0045)$
$\gamma_{ m Aug}$	$1.3050^{***}(0.0493)$	$\gamma_{ m Aug}$	$1.0514^{***}(0.0383)$	$\gamma_{ m Aug}$	$0.1137^{***}(0.0035)$	$\gamma_{ m Aug}$	$0.0378^{***}(0.0016)$
$\gamma_{ m Sep}$	$1.2205^{***}(0.1380)$	$\gamma_{ m Sep}$	$0.9919^{***}(0.1059)$	$\gamma_{ m Sep}$	$0.1131^{***}(0.0113)$	$\gamma_{ m Sep}$	$0.0372^{***}(0.0038)$
$\gamma_{ m Oct}$	$-0.2428^{***}(0.0483)$	$\gamma_{ m Oct}$	$-0.2224^{***}(0.0382)$	$\gamma_{ m Oct}$	$-0.0191^{***}(0.0044)$	$\gamma_{ m Oct}$	$-0.0067^{***}(0.0015)$
$\gamma_{ m Nov}$	$-0.6171^{***}(0.0494)$	$\gamma_{ m Nov}$	$-0.5120^{***}(0.0387)$	$\gamma_{ m Nov}$	$-0.0562^{***}(0.0041)$	$\gamma_{ m Nov}$	$-0.0182^{***}(0.0015)$
$\gamma_{ m Dec}$	$4.0804^{***}(0.1674)$	$\gamma_{ m Dec}$	$3.4212^{***}(0.1369)$	$\gamma_{ m Dec}$	$0.3637^{***}(0.0108)$	$\gamma_{ m Dec}$	$0.1215^{***}(0.0044)$
ω	$-0.9301^{***}(0.0484)$	ω	$-1.0078^{***}(0.0495)$	ω	$-0.8338^{***}(0.0438)$	ω	$-0.6769^{***}(0.0368)$
β	$0.7976^{***}(0.0102)$	eta	$0.7800^{***}(0.0105)$	eta	$0.8281^{***}(0.0089)$	eta	$0.8273^{***}(0.0092)$
α	$0.2004^{***}(0.0064)$	lpha	$0.2229^{***}(0.0068)$	lpha	$0.1298^{***}(0.0043)$	α	$0.1385^{***}(0.0046)$
λ_0	$-2.9936^{***}(0.8533)$	λ_0	$-2.9098^{***}(0.8859)$	λ_0	$-3.4120^{***}(0.5187)$	λ_0	$-2.4672^{***}(0.5576)$
u	$1.8338^{***}(0.0368)$	au	$0.0387^{***}(0.0084)$	ξ	$0.3544^{***}(0.0370)$	u	$1.0697^{***}(0.0349)$
		u	$1.4936^{***}(0.0451)$	ζ	$0.2505^{***}(0.0404)$	η	$0.0559^{***}(0.0125)$
		η	$0.8207^{***}(0.0117)$				
C_{λ}	0.3642	C_{λ}	0.3318	C_{λ}	0.4791	C_{λ}	0.4674
$\mathbf{L}\mathbf{L}$	3.1134	$\mathbf{L}\mathbf{L}$	3.1211	$\mathbf{L}\mathbf{L}$	3.0922	$\mathbf{L}\mathbf{L}$	3.0925
AIC	-6.2209	AIC	-6.2356	AIC	-6.1783	AIC	-6.1788
BIC	-6.2011	BIC	-6.2137	BIC	-6.1574	BIC	-6.1580
HQC	-6.2140	HQC	-6.2280	HQC	-6.1710	HQC	-6.1716
\mathbf{LR}	$0.0077^{***}(0.0021)$	\mathbf{LR}	NA		$0.0288^{***}(0.0067)$	\mathbf{LR}	$0.0285^{***}(0.0060)$

Results on model performance

The likelihood-based metrics show that:

(i) Skew-Gen-t-DCS is superior to t-DCS

(ii) *NIG-DCS* is superior to EGB2-DCS

Thus, for GTQ/USD data, the new DCS location models of our paper are more parsimonious than the previous models from the body of literature.

(iii) Skew-Gen-t is superior to NIG-DCS

Results on stochastic annual seasonality

For all models, the following figures show that the importance of the stochastic annual seasonality component has reduced in the past years:

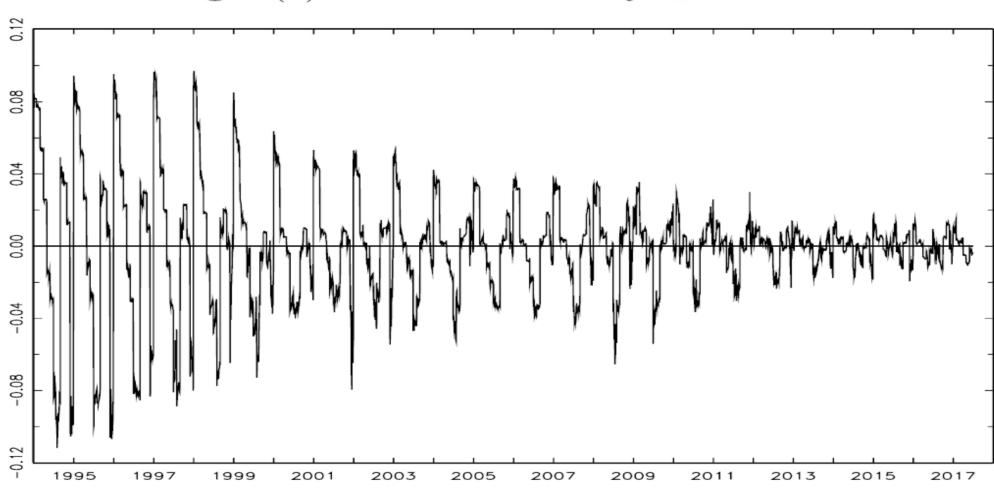
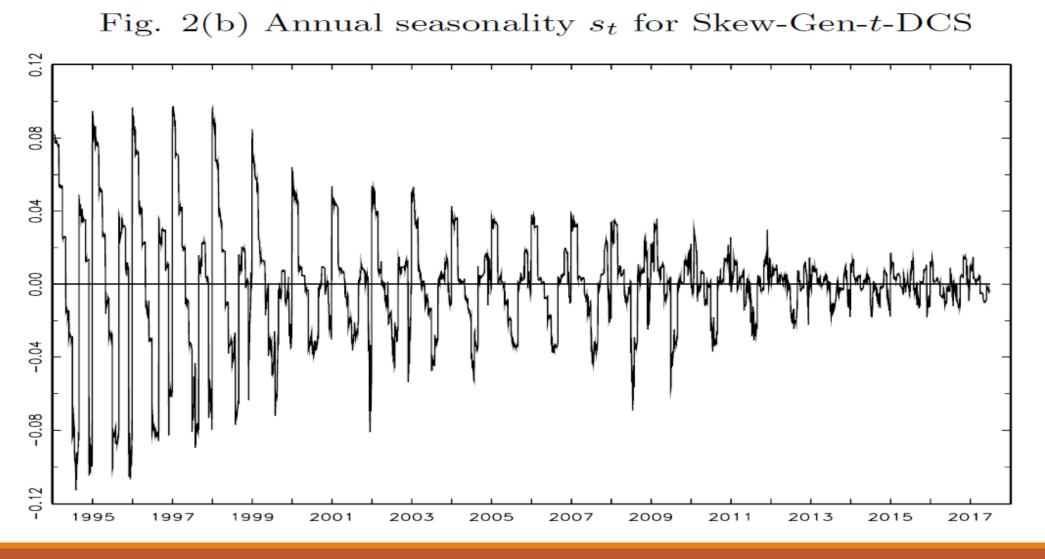
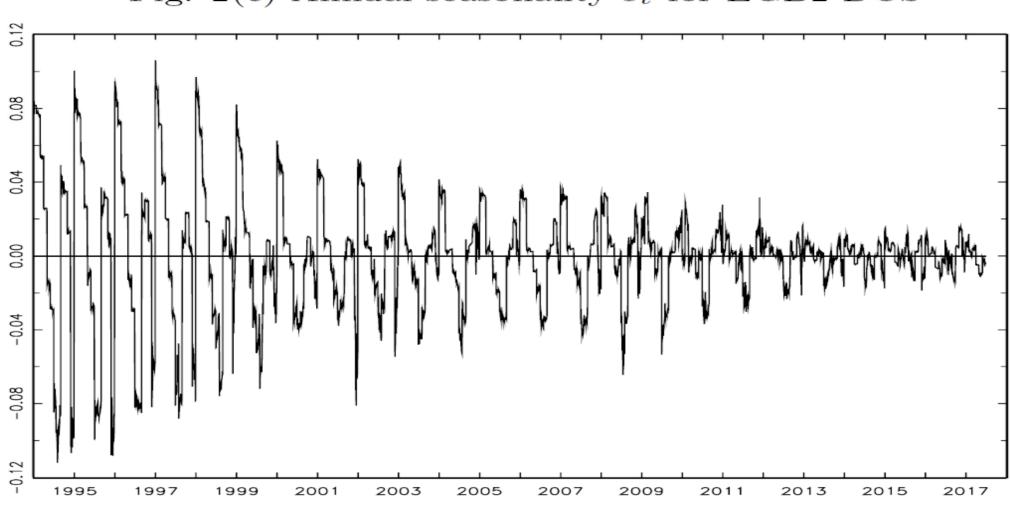




Fig. 2(a) Annual seasonality s_t for t-DCS

Fig. 2(c) Annual seasonality s_t for EGB2-DCS

GESG SEMINAR 21 SEPTEMBER 2017 (C) ASTRID AYALA, SZABOLCS BLAZSEK

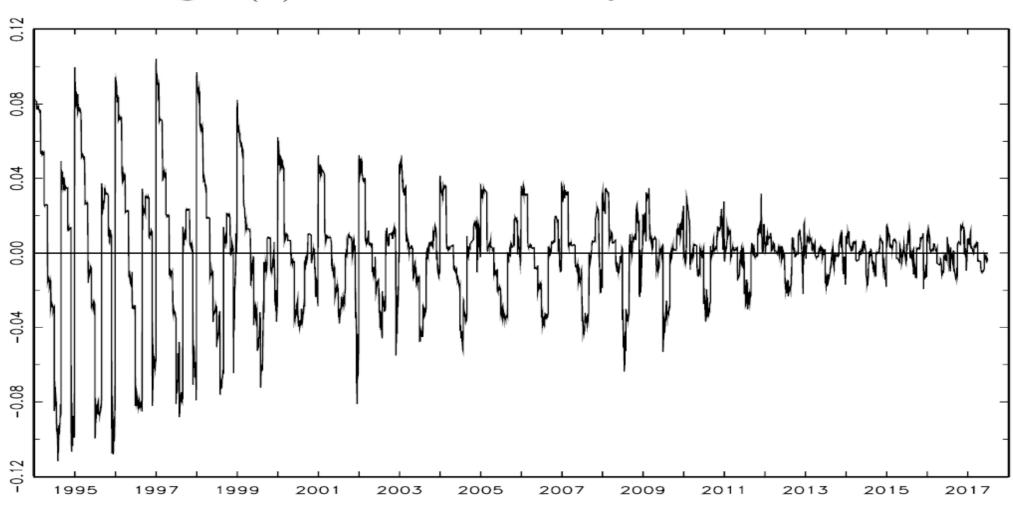


Fig. 2(d) Annual seasonality s_t for NIG-DCS

Reasons for decreasing importance of annual seasonality effects

(i) Reduction of total exports growth rate

(ii) Reduction in the relative importance of the total exports

(iii) Reduction of agricultural product exports compared to total exports

Year	Regime	Exports	Exports $\%$	Exports mean $\%$	Imports	Imports $\%$	Imports mean $\%$
1993		$1,\!249,\!135.00$			$1,\!825,\!336.80$		
1994	$\mathbf{R1}$	1,719,461.80	37.7%		$2,\!416,\!061.50$	32.4%	
1995	$\mathbf{R1}$	$2,\!314,\!620.36$	34.6%		$2,\!855,\!612.18$	18.2%	
1996	$\mathbf{R1}$	$2,\!356,\!943.45$	1.8%		$2,\!581,\!500.20$	-9.6%	
1997	$\mathbf{R1}$	$3,\!147,\!110.12$	33.5%		$3,\!551,\!071.23$	37.6%	
1998	$\mathbf{R1}$	$3,\!502,\!412.56$	11.3%		$4,\!288,\!290.71$	20.8%	
1999	$\mathbf{R1}$	$2,\!663,\!945.10$	-23.9%		$3,\!361,\!987.53$	-21.6%	
2000	R1	$2,\!954,\!127.01$	10.9%	R1: 15.1%	$3,\!406,\!576.45$	1.3%	R1: 11.3%
2001	R2	$2,\!496,\!071.04$	-15.5%		$3,\!595,\!573.30$	5.5%	
2002	R2	$2,\!218,\!061.44$	-11.1%		$3,\!845,\!055.97$	6.9%	
2003	R2	$2,\!661,\!740.70$	20.0%		$4,\!305,\!029.40$	12.0%	
2004	R2	$3,\!074,\!419.20$	15.5%		$4,\!588,\!573.70$	6.6%	
2005	R2	$3,\!644,\!831.80$	18.6%		6,010,208.40	31.0%	
2006	R2	$3,\!813,\!656.50$	4.6%		$7,\!279,\!563.30$	21.1%	
2007	R2	$4,\!219,\!396.20$	10.6%		$9,\!363,\!544.70$	28.6%	
2008	R2	5,034,553.30	19.3%	R2: 7.8%	$11,\!695,\!311.00$	24.9%	R2: 17.1%
2009	R3	4,795,305.10	-4.8%		$9,\!362,\!202.80$	-19.9%	
2010	R3	$5,\!490,\!744.44$	14.5%		$11,\!169,\!889.52$	19.3%	
2011	R3	$6,\!576,\!115.10$	19.8%		$13,\!451,\!267.10$	20.4%	
2012	R3	$6,\!561,\!021.10$	-0.2%		$13,\!767,\!708.70$	2.4%	
2013	R3	$6,\!464,\!898.00$	-1.5%		$13,\!791,\!808.10$	0.2%	
2014	R3	$6,\!640,\!461.10$	2.7%		$14,\!239,\!560.90$	3.2%	
2015	R3	$6,\!409,\!639.40$	-3.5%		$14,\!058,\!324.00$	-1.3%	
2016	R3	$6,\!421,\!918.00$	0.2%	R3: 3.4%	$13,\!924,\!693.80$	-1.0%	R3: 2.9%

Fig. 3(a) Total exports from Guatemala 0.20 R1 is 1994 to 2000 (solid thin); R2 is 2001 to 2008 (dashed thin); R3 is 2009 to 2016 (solid thick). 0.18 Relative importance of export income (relative importance is computed with respect to the 0.16 sum of total inflows and total outflows of USD). 0.14 0.12 0.10 0.08 Jan Feb Sep Mar Apr May Jul Oct Nov Dec Jun Aug

Year	Total exports	Coffee	Sugar	Banana	Cardamom	Other products	CSBC $(\%)$	Other $(\%)$
1994	1,502.60	318.3	161.5	113.9	42.3	866.6	42.33%	57.67%
1995	1,935.50	539.3	238.2	138.6	40.7	978.7	49.43%	50.57%
1996	2,030.70	472.4	202.1	155.2	39.4	1,161.60	42.80%	57.20%
1997	2,344.10	589.5	255.4	151.1	38	1,310.10	44.11%	55.89%
1998	2,581.70	586.6	316.7	191.4	36.7	$1,\!450.30$	43.82%	56.18%
1999	2,460.40	562.6	195.2	135.4	56.5	1,510.70	38.60%	61.40%
2000	$2,\!699.00$	575	190.8	167.5	79.4	$1,\!686.30$	37.52%	62.48%
2001	2,411.70	306.5	212.6	185	96.1	$1,\!611.50$	33.18%	66.82%
2002	4,162.10	261.8	227	216.3	93.3	3,363.70	19.18%	80.82%
2003	$4,\!459.40$	299.4	212.3	210	78.9	$3,\!658.80$	17.95%	82.05%
2004	5,033.60	328	188	229.7	73.8	4,214.10	16.28%	83.72%
2005	5,380.90	464.1	236.6	238.1	70.4	4,371.70	18.76%	81.24%
2006	6,012.80	464	298.6	216.8	83.4	4,950.00	17.68%	82.32%
2007	6,897.70	577.3	358.1	300.2	137.1	5,525.00	19.90%	80.10%
2008	7,737.40	646.2	378.1	317.1	208	6,188.00	20.02%	79.98%
2009	7,213.70	582.3	507.7	414.8	304.1	5,404.80	25.08%	74.92%
2010	8,462.50	713.9	726.7	353.3	308.1	6,360.50	24.84%	75.16%
2011	10,400.90	$1,\!174.20$	648.8	475.3	296.9	7,805.70	24.95%	75.05%
2012	9,978.70	958.1	803	499.8	250.3	7,467.50	25.17%	74.83%
2013	10,024.80	714.5	941.9	594.7	215.6	7,558.10	24.61%	75.39%
2014	10,803.50	668.2	951.7	651.8	239.8	8,292.00	23.25%	76.75%
2015	$10,\!674.80$	663	850.8	715.1	243	8,202.90	23.16%	76.84%
2016	$10,\!449.40$	649.1	816.7	702.6	229	8,052.00	22.94%	77.06%

Thank you for your attention!

AAYALA@UFM.EDU

SBLAZSEK@UFM.EDU