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(i) S&P 500 daily return; (ii) Probability of being in high volatility regime



Motivation

The previous figure shows the daily log-returns on the S&P 500 
index.

As the figure shows, low-volatility and high-volatility periods, 
each with random duration, follow each other.

We use a class of dynamic models that can replicate those data:

Markov regime-switching (MS) volatility models

Those models can be used to predict and also to simulate future 
log-returns on the S&P 500.
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Contribution of the present work

We introduce new MS DCS-EGARCH models.

MS (Markov regime-Switching) (Hamilton 1989 Econometrica; 
Kim and Nelson 1999 The MIT Press)

DCS (Dynamic Conditional Score) (Harvey 2013, Cambridge 
University Press)

DCS-EGARCH (Exponential Generalized Autoregressive 
Conditional Heteroscedasticity) (Harvey 2013, Cambridge 
University Press) RECENT DYNAMIC VOLATILITY MODELS
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Contribution of the present work

Blazsek and Ho (2017, Applied Economics) introduced the MS 
Beta-t-EGARCH model that is a particular MS DCS-EGARCH model.

Blazsek and Ho (2017) show that the statistical performance and 
the predictive performance of MS Beta-t-EGARCH are superior to 
those of single-regime Beta-t-EGARCH.

For MS Beta-t-EGARCH, the error term has the Student’s t 
distribution: 
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Contribution of the present work
We introduce:

(i) MS GED-EGARCH (Generalized Error Distribution)

(ii) MS Gen-t-EGARCH (Generalized t distribution)

(iii) MS Skew-Gen-t-EGARCH (Skewed Generalized t distribution)

(iv) MS EGB2-EGARCH (Exponential Generalized Beta 
distribution of the second kind)

(v) MS NIG-EGARCH (normal-inverse Gaussian distribution)

We include leverage effects for all volatility models.
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Contribution of the present work
We compare the statistical performance of those models with that of 
the benchmark

MS t-GARCH with leverage effects 

(Bollerslev 1987; Glosten, Jagannathan and Runkle 1993) 

and the recent

MS Beta-t-GARCH with leverage effects 

(Harvey and Chakravarty 2008).

For each MS model, we also consider the corresponding single-
regime alternative.
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Benchmark MS t-GARCH(1,1)
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where 1(·) is the indicator function.

This volatility model is updated by the square of the first lag of 
the regime-dependent unexpected return �� �� .
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DCS-EGARCH(1,1) models

�� = �� �� + �� �� = �� �� + exp [λ� �� ]�� ��
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λ� �� = � �� + � �� λ��	 �� + � �� � ,��	 ��

+�∗ �� sgn −���	 �� [� ,��	 �� + 1]

where sgn(·) is the signum function.

� ,� �� denotes the regime-dependent score function with 

respect to λ� �� . 
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Markov regime-switching (MS) model
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This is the transition probability matrix of the regimes.

We assume that it is constant over time, and that it is 
determined by two parameters: & and '.
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Data

As an illustration, we use daily log-return data from the 
Standard & Poor's 500 (S&P 500) for period 1950 to 2016:
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Results

First, we estimate the unrestricted versions of all single-regime 
and MS models.

For all estimations, we use the Maximum Likelihood (ML) 
method for non-path-dependent MS models (Klaassen 2002, 
Empirical Economics).

We use the results of Abramson and Cohen (2007, Econometric 
Theory) to check the consistency and asymptotic normality of 
the ML estimates.
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Diagnostic tests

For all parameters two alternatives are estimated (one for each 
regime). 

We test whether those two parameters are significantly 
different from each other:
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Diagnostic tests

For several pairs of parameters we find that they are not 
different.

Second, for those cases, we assume that they are identical and 
we estimate restricted MS models:
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Probability of high-volatility regime

In the following figures, we present the evolution of the 
smoothed probability of the high-volatility regime: 
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Thank you for your 
attention!
SBLAZSEK@UFM.EDUSBLAZSEK@UFM.EDUSBLAZSEK@UFM.EDUSBLAZSEK@UFM.EDU
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