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Beta-t-EGARCH for extreme observations

Szabolcs Blazsek, Daniela Carrizo, Ricardo Eskildsen and Humberto Gonzalez

Summary: In this manuscript two dynamic econometric models are compared. The first model

is a standard financial time-series model of asset returns: the AR (autoregressive) plus GARCH

(generalized autoregressive conditional heteroscedasticity) model. The second model is a recent

financial time-series model of asset returns that belongs to the family of dynamic conditional

score (DCS) models: the QAR (quasi-AR) plus Beta-t-EGARCH (exponential GARCH) model.

A general property of DCS models is that the effects of extreme observations are reduced, hence

a DCS model is robust to extreme observations. For DCS models the degree of discounting

of extreme observations is endogenously estimated. With respect to the treatment of extreme

observations, AR-GARCH is a special case of QAR-Beta-t-EGARCH. In the present paper, we

compare the return and volatility predictive performances of AR-GARCH and QAR-Beta-t-

EGARCH. The main purpose of this study is to compare those predictive performances for the

days when extreme value is observed and also for the first trading day after days when extreme

value is observed. The discussion paper is organized in two chapters. In the first chapter, we

use data from the Standard & Poor’s 500 (S&P 500) index for period 1950 to 2016. We study

the predictive performances of AR-GARCH and QAR-Beta-t-EGARCH for all days of the data

window, for the days when extreme value is observed and for the first trading day after days

when extreme value is observed. In the second chapter, we use an extended time period and

an extended econometric specification. We use historical data from the Dow Jones Industrial

Average (DJIA) index for period 1896 to 2017. We study the return and volatility predictive
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performances of AR-GARCH with leverage effects and QAR-Beta-t-EGARCH with leverage

effects for the days when extreme value is observed and for the first trading day after days

when extreme value is observed. In both chapters, we define extreme observations by using the

Chebyshev inequality. The most important result of this discussion paper is that AR-GARCH

dominates QAR-Beta-t-EGARCH for the days when extreme observation is observed, and QAR-

Beta-t-EGARCH dominates AR-GARCH for the first trading day after days when extreme value

is observed. This result provides a suggestion to financial investors with respect to the choice of

the financial time-series model that is applied for return and volatility predictions, for the days

when extreme observation is observed and for the consecutive trading day.

Contact information: Daniela Carrizo (danielle dicarrizo4@gmail.com), Ricardo Eskildsen (ri-

cardoeskildsen@ufm.edu), Humberto Gonzalez (humbertogonzalez@ufm.edu), Szabolcs Blazsek

(sblazsek@ufm.edu). Address: School of Business, Universidad Francisco Marroqúın, Calle

Manuel F. Ayau, Zona 10, Ciudad de Guatemala 01010, Guatemala.
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Chapter 1

Should market value news be cause for concern?

A study on AR plus GARCH versus QAR plus Beta-t-EGARCH

Szabolcs Blazsek, Daniela Carrizo, Ricardo Eskildsen and Humberto Gonzalez

School of Business, Universidad Francisco Marroqúın, Guatemala City, Guatemala

Abstract. The manner in which investors react to incoming market news can present a

bias in their choice of algorithm as a means of effectively utilising that news. In this paper,

we study whether to be concerned or not after news on market value, and use either the

autoregressive (AR) plus generalized autoregressive conditional heteroscedasticity (GARCH)

or quasi-AR (QAR) plus Beta-t-EGARCH (exponential GARCH) models, respectively. We use

data for period 1950 to 2016 from the Standard & Poor’s 500 (S&P 500) index. We use the

following datasets: (D1) all days of the in-sample data window, (D2) each day for which an

outlier is observed, and (D3) the trading day after each day for which an outlier is observed.

We use alternative definitions of outliers, according to Chebyshev’s inequality. We obtain the

following results. For (D1), it is better to be calm and use QAR plus Beta-t-EGARCH. For

(D2), it is better to be concerned and use AR plus GARCH. For (D3), it is better to be calm

and use QAR plus Beta-t-EGARCH.

Keywords: dynamic conditional score (DCS) models; autoregressive (AR) plus generalized

autoregressive conditional heteroscedasticity (GARCH) model; quasi-AR (QAR) plus Beta-t-

EGARCH (exponential GARCH) model; outliers; Chebyshev’s inequality

JEL classification: C22, C52, C58, G12
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I. Introduction

In this paper, we compare the in-sample statistical and in-sample forecast performances of

autoregressive (AR) (Box and Jenkins, 1970) plus generalized autoregressive conditional het-

eroscedasticity (GARCH) (Bollerslev, 1986; Taylor, 1986) and quasi-AR (QAR) (Harvey, 2013)

plus Beta-t-EGARCH (exponential GARCH) (Harvey and Chakravarty, 2008) models. AR plus

GARCH is a standard financial time-series model, and QAR plus Beta-t-EGARCH belongs to

the family of dynamic conditional score (DCS) models (Creal et al., 2013; Harvey, 2013). For

DCS models, each dynamic equation is updated by the conditional score of the log-likelihood

(LL) function with respect to a time-varying parameter.

The manner in which investors react to incoming market news can affect the model they

might adopt in order to effectively deal with that news. An important difference between AR

plus GARCH and QAR plus Beta-t-EGARCH models is how expected return and volatility are

updated after the new information εt arrives to the market. For AR plus GARCH, expected

return and volatility are updated proportionally to εt and ε2t , respectively. Hence, εt is not

discounted in the case of AR due to the linear transformation, and it is accentuated for GARCH

due to the quadratic transformation. For QAR plus Beta-t-EGARCH, expected return and

volatility are updated proportionally to different non-linear transformations of εt. Those non-

linear transformations discount εt for both expected return and volatility. The purpose of this

paper is to study whether to be concerned or not after news on market value εt, and use either

AR plus GARCH or QAR plus Beta-t-EGARCH, respectively.

We use data from the Standard & Poor’s 500 (S&P 500) market index. The in-sample data

window is for period 1950 to 2016. In our empirical analysis, we use the following datasets:

(D1) all days of the in-sample data window, (D2) each day for which an outlier is observed, and

(D3) the trading day after each day for which an outlier is observed. For (D2) and (D3), we use

alternative definitions of outliers, according to Chebyshev’s inequality.

We obtain the following results. First, for (D1), the LL-based performance of QAR plus

Beta-t-EGARCH is superior to that of AR plus GARCH. Correspondingly, both return and
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volatility predictions of QAR plus Beta-t-EGARCH are superior to those of AR plus GARCH.

This result suggests that, in general, it is better to be calm and use QAR plus Beta-t-EGARCH,

instead of being concerned and using AR plus GARCH.

Second, for (D2), the volatility prediction of AR plus GARCH is superior to that of QAR plus

Beta-t-EGARCH, for all outlier definitions. This suggests that volatility can be predicted better

by being concerned and using AR plus GARCH for prediction. According to this result, one

would need to know a priori that tomorrow there will be an outlier, and given that information

one would then use AR plus GARCH.

Third, for (D3), the return prediction of QAR plus Beta-t-EGARCH is superior to that of

AR plus GARCH, for all outlier definitions. For (D3), we also find that the volatility prediction

of QAR plus Beta-t-EGARCH is superior to that of AR plus GARCH, with respect to one of

the outlier definitions. According to these results, it is better to be calm and use QAR plus

Beta-t-EGARCH for prediction, after an outlier is observed.

The remainder of this paper is organised as follows. Section II describes the dataset.

Section III presents the econometric models. Section IV presents the parameter estimation

method. Section V presents the in-sample estimation results. Section VI presents the in-sample

forecast performance results. Section VII concludes.

II. Data

We use time-series data for the daily closing value pt of the S&P 500 market index. The in-

sample data window is for period 1950 to 2016. The source of the data is Yahoo Finance,

https://finance.yahoo.com/ (accessed on 18th October 2016). We estimate all models for the

daily percentage change (i.e. daily return) of the S&P 500, yt = (pt − pt−1)/pt−1 for t = 1, . . . , T

days (for p0, we use pre-sample data for the S&P 500 index). We present the start and end dates

of the in-sample window, and sample size T , minimum, maximum, mean, standard deviation,

skewness and excess kurtosis of yt, in Table 1. The excess kurtosis estimate indicates heavy tails

for the probability distribution of yt.

[APPROXIMATE LOCATION OF TABLE 1]
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III. Econometric models

First, the AR(p) plus GARCH(1,1) model for the daily S&P 500 returns is

yt = µt + vt = µt + λ
1/2
t εt (1)

µt = c+

p∑
j=1

φjyt−j = c+

p∑
j=1

φj

(
µt−j + λ

1/2
t−jεt−j

)
(2)

λt = ω + βλt−1 + αv2
t−1 = ω + βλt−1 + αλt−1ε

2
t−1 (3)

for t = 1, . . . , T , where µt is the conditional mean of yt, vt is the unexpected return, λt is

the conditional variance of yt, and εt ∼ N(0, 1) is the i.i.d. error term representing the new

information that arrives to the market. If SVar = α+β < 1, then yt will be covariance stationary

in the variance. The initial value of λt is estimated by parameter λ0. The log of the conditional

density of yt is

ln f(yt|y1, . . . , yt−1) = −1

2
ln(2πλt)−

ε2t
2

(4)

Second, the QAR(p) plus Beta-t-EGARCH(1,1) model for the daily S&P 500 returns is

yt = µt + vt = µt + exp(λt)εt (5)

µt = c+

p∑
j=1

φjµt−j + θet−1 (6)

λt = ω + βλt−1 + αut−1 (7)

for t = 1, . . . , T , where µt is the conditional mean of yt, vt is the unexpected return, exp(λt) is

the conditional scale of yt, and the εt ∼ t(ν) i.i.d. error term represents the new information that

arrives to the market. If SVar = |β| < 1, then yt will be covariance stationary in the variance.
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The initial value of λt is estimated by parameter λ0. The log of the conditional density of yt is

ln f(yt|y1, . . . , yt−1) = ln Γ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− λt −

ln(πν)

2
− ν + 1

2
ln

(
1 +

ε2t
ν

)
(8)

where Γ(x) is the gamma function. The et term in Equation 6 is proportional to the conditional

score with respect to µt:

∂ ln f(yt|y1, . . . , yt−1)

∂µt
= et ×

ν + 1

ν exp(2λt)
=
ν exp(λt)εt
ν + ε2t

× ν + 1

ν exp(2λt)
(9)

The ut term in Equation 7 is the conditional score with respect to λt:

ut =
∂ ln f(yt|y1, . . . , yt−1)

∂λt
=

(ν + 1)ε2t
ν + ε2t

− 1 (10)

An important difference between AR plus GARCH and QAR plus Beta-t-EGARCH is how

µt and λt are updated after market news arrives. For AR plus GARCH, µt and λt are updated

proportionally to the first lag of εt (Equation 2) and ε2t (Equation 3), respectively. For QAR

plus Beta-t-EGARCH, µt and λt are updated proportionally to the first lag of et (Equation 6)

and ut (Equation 7), respectively. We present these updating terms, as functions of εt, in Fig. 1.

The impact of εt is not discounted in the case of AR due to the linear transformation, and it

is accentuated for GARCH due to the quadratic transformation. On the other hand, for QAR

plus Beta-t-EGARCH, εt is discounted for both µt and λt.

[APPROXIMATE LOCATION OF FIGURE 1]

IV. Parameter estimation

All econometric models in this paper are estimated for the in-sample data window, by using the

maximum likelihood (ML) method (Davidson and MacKinnon, 2003). The ML estimator is

Θ̂ML = arg max
Θ

T∑
t=1

ln f(yt|y1, . . . , yt−1) (11)
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where Θ denotes the vector of parameters. We use the robust sandwich ML estimator to compute

standard errors of parameters (i.e. robust covariance matrix) (Davidson and MacKinnon, 2003).

V. In-sample estimation results

We present the ML parameter estimates and model diagnostics for AR plus GARCH and QAR

plus Beta-t-EGARCH in Table 2. First, in order to identify the lag structure of AR(p) and

QAR(p), we perform a preliminary estimation of the partial autocorrelation function (PACF)

(Hamilton, 1994) of yt up to 30 lags. We consider those lags of yt and µt in Equations 2 and 6,

respectively, for which the PACF is different from zero, at least at the 10% level of significance.

For the initial days of the in-sample data window, we use pre-sample data for the missing values

of yt−j and µt−j (the pre-sample period is from 3rd January 1950 to 14th February 1950). For

the ML estimator, we find statistically significant AR and QAR parameters, for several lags (see

Table 2). For QAR, we find that θ is positive and significantly different from zero (see Table 2).

Second, we find significant volatility dynamics for both AR plus GARCH and QAR plus

Beta-t-EGARCH (Equations 3 and 7, respectively), as α and β are significantly different from

zero for both models. Covariance stationarity in the variance is not supported for AR plus

GARCH, but it is supported for QAR plus Beta-t-EGARCH (see Table 2).

Third, the degrees of freedom estimate for QAR plus Beta-t-EGARCH suggests heavy tails

for yt, since ν̂ = 7.1428 < 30 (see Table 2) (this confirms the excess kurtosis estimate of Table 1).

Fourth, we use the following LL-based model selection metrics: (i) mean LL = LL/T ; (ii)

mean Akaike information criterion (AIC), mean AIC = 2K/T − 2LL/T (K denotes the number

of parameters); (iii) mean Bayesian information criterion (BIC), mean BIC = ln(T )K/T −

2LL/T ; (iv) mean Hannan-Quinn criterion (HQC), mean HQC = 2K ln[ln(T )]/T − 2LL/T

(Davidson and MacKinnon, 2003). All metrics suggest that the statistical performance of QAR

plus Beta-t-EGARCH is superior to that of AR plus GARCH (see Table 2).

Fifth, we use the non-nested likelihood-ratio (LR) test (Vuong, 1989) to study whether the

mean LL values of AR plus GARCH and QAR plus Beta-t-EGARCH are significantly different.

We define dt = ln f(yt|y1, . . . , yt−1)− ln g(yt|y1, . . . , yt−1) for t = 1, . . . , T , where f and g are the
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conditional density functions of QAR plus Beta-t-EGARCH and AR plus GARCH, respectively.

We estimate the linear regression model dt = c + εt for t = 1, . . . , T , by using ordinary least

squares (OLS) with heteroscedasticity and autocorrelation consistent (HAC) standard errors

(Newey and West, 1987). We find that c is positive and significantly different from zero (see

Table 2). Hence, mean LL of QAR plus Beta-t-EGARCH is superior to that of AR plus GARCH.

Sixth, we use the Ljung–Box (LB) (1978) test for the residuals ε̂t with t = 1, . . . , T . Under

the null hypothesis of the LB test, εt for t = 1, . . . , T are independent. The LB test results

support the independence assumption for εt, for both AR plus GARCH and QAR plus Beta-t-

EGARCH (see Table 2). These results suggest that the dynamics used for conditional mean and

conditional volatility are effective, for both AR plus GARCH and QAR plus Beta-t-EGARCH.

[APPROXIMATE LOCATION OF TABLE 2]

VI. In-sample forecast performance

For the in-sample forecast performance analysis, we use the following datasets: (D1) all days of

the in-sample data window (see Table 1), (D2) each day for which an outlier is observed, and

(D3) the trading day after each day for which an outlier is observed. For (D2) and (D3), we

define outliers by using Chebyshev’s inequality

Pr(|yt − µ| ≥ kσ) ≤ 1

k2
for k > 1 (12)

where µ and σ are the unconditional mean and unconditional standard deviation of yt. An

advantage of the use of Chebyshev’s inequality is that it can be applied to arbitrary probability

distributions of yt with finite µ and σ. µ and σ are estimated by using µ̂ =
∑T

t=1 yt/T and

σ̂ = [
∑T

t=1(yt− µ̂)2/(T − 1)]1/2, respectively. For the selection of k, we consider the alternatives

k = 3, 4 and 5, which correspond to 11.11%, 6.25% and 4.00% upper bounds of probability,

respectively, in Equation 12. We consider an observation of yt as an outlier if |yt − µ̂| ≥ kσ̂.

For k = 3, 4 and 5, the number of days with outliers are 235, 97 and 45, respectively, from the

in-sample data window (these are the sample sizes for both (D2) and (D3), depending on the
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choice of k). We present all outliers in the Appendix, where outliers are depicted by ×.

For (D1) to (D3), we compare the one-step ahead in-sample forecast performance of AR

plus GARCH and QAR plus Beta-t-EGARCH. We study both return and volatility forecasts.

The return forecasts for AR plus GARCH and QAR plus Beta-t-EGARCH are f1y,t = µ̂t and

f2y,t = µ̂t, respectively. The volatility forecasts for AR plus GARCH and QAR plus Beta-t-

EGARCH are f1σ,t = λ̂
1/2
t and f2σ,t = exp(λ̂t)[ν̂/(ν̂−2)]1/2, respectively. We compare the return

and volatility forecasts with yt (true return) and |yt| (proxy of true volatility), respectively. The

work of Day and Lewis (1992) motivates the use of |yt| as a proxy of true volatility.

For each day of (D1) to (D3), we measure predictive accuracy by using the Absolute Error

(AE) metric. For the return forecasts of AR plus GARCH and QAR plus Beta-t-EGARCH, we

use AE1y,t = |yt − f1y,t| and AE2y,t = |yt − f2y,t|, respectively. For the volatility forecasts of

AR plus GARCH and QAR plus Beta-t-EGARCH, we use AE1σ,t = ||yt| − f1σ,t| and AE2σ,t =

||yt| − f2σ,t|, respectively. It is noteworthy that we obtain similar results for the Squared Error

(SE) forecast performance metric, e.g. SE1y,t = (yt − f1y,t)
2. For each day of (D1) to (D3), we

compare AE of AR plus GARCH and QAR plus Beta-t-EGARCH, by using dt = AE1y,t−AE2y,t

(for return forecasting) and dt = AE1σ,t − AE2σ,t (for volatility forecasting). For both pairs of

AE, we test whether the mean AE (MAE) is significantly different from zero, by using the

linear regression model dt = c + εt that is estimated by OLS–HAC. A significantly positive c

indicates that the predictive performance of QAR plus Beta-t-EGARCH is superior to that of

AR plus GARCH. A significantly negative c indicates that the predictive performance of AR

plus GARCH is superior to that of QAR plus Beta-t-EGARCH.

We present the estimation results of c in Table 3. First, for the in-sample data window (D1),

both return and volatility predictions of QAR plus Beta-t-EGARCH are superior to those of

AR plus GARCH (see Table 3). These results suggest that, in general, it is better to be calm

and use QAR plus Beta-t-EGARCH, instead of being concerned and using AR plus GARCH,

for one-step ahead prediction purposes.

Second, for the days of outliers (D2), the volatility prediction of AR plus GARCH is superior
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to that of QAR plus Beta-t-EGARCH, for all outlier definitions (see Table 3). We also find that

the return predictions of the two models are identical, for all outlier definitions (see Table 3).

These results suggest that, for the days with outliers, volatility can be predicted more precisely

by being concerned and using AR plus GARCH. According to this result, one would need to

know a priori that tomorrow there will be an outlier, and given that information one would use

AR plus GARCH for prediction.

Third, for the days after outliers (D3), the return prediction of QAR plus Beta-t-EGARCH

is superior to that of AR plus GARCH, for all outlier definitions (see Table 3). We also find that

the volatility prediction of QAR plus Beta-t-EGARCH is superior to that of AR plus GARCH,

for k = 3 (see Table 3). Our results for (D3) are useful for practitioners, since they suggest that

it is better to be calm and use QAR plus Beta-t-EGARCH, as opposed to being concerned and

using AR plus GARCH, after an outlier is observed by the investor.

[APPROXIMATE LOCATION OF TABLE 3]

VII. Conclusion

The manner in which investors react to incoming market news can present a bias in their choice

of algorithm as a means of effectively utilising that news. We have studied whether to be

concerned or not after news on market value, and use AR plus GARCH or QAR plus Beta-t-

EGARCH, respectively. We have used data for period 1950 to 2016 from the S&P 500. We have

considered three datasets: all days of the in-sample data window, each day for which an outlier

is observed, and the trading day after each day for which an outlier is observed.

For all days of the in-sample data window, our results have suggested that it is better

to be calm and use QAR plus Beta-t-EGARCH, instead of being concerned and using AR plus

GARCH. For each day for which an outlier is observed, our results have suggested that volatility

can be predicted more precisely by being concerned and using AR plus GARCH. According to

this result, one would need to know a priori that tomorrow there will be an outlier, and given

that information one would use AR plus GARCH for prediction. This result is not very useful

for practitioners, since the arrival times of outliers are difficult to predict. For the trading day
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after each day for which an outlier is observed, our results are useful for practitioners, since they

have suggested that it is better to be calm and use QAR plus Beta-t-EGARCH, as opposed to

being concerned and using AR plus GARCH.

It is noteworthy that all results reported in this paper are in-sample results. The evaluation

of out-of-sample forecasts of AR plus GARCH and QAR plus Beta-t-EGARCH is an extension

of the present work and a subject of future research.
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Table 1. Descriptive statistics of S&P 500 return, in-sample data window (D1)

Start date 2nd February 1950

End date 17th October 2016

Sample size T 16, 777

Minimum −0.2047

Maximum 0.1158

Mean 0.0003

Standard deviation 0.0097

Skewness −0.6402

Excess kurtosis 20.7854
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Table 2. Parameter estimates and model diagnostics, in-sample data window (D1)

AR plus GARCH QAR plus Beta-t-EGARCH

c 0.0005∗∗∗(0.0001) 0.0009∗∗∗(0.0003)

φ1 0.0926∗∗∗(0.0086) −0.2327∗∗∗(0.0763)

φ2 −0.0258∗∗∗(0.0085) −0.1510∗(0.0796)

φ5 −0.0099(0.0084) −0.1810∗∗(0.0913)

φ6 −0.0198∗∗(0.0086) −0.1534(0.1204)

φ7 −0.0107(0.0081) −0.0829(0.0982)

φ9 −0.0101(0.0088) 0.0900(0.0617)

φ10 0.0132(0.0080) −0.1239(0.0820)

φ11 −0.0137∗(0.0083) 0.0771(0.0868)

φ12 0.0111(0.0077) 0.1203(0.0931)

φ15 −0.0084(0.0080) 0.1055(0.0935)

φ16 0.0135∗(0.0079) 0.0553(0.0759)

φ18 −0.0086(0.0081) −0.0849(0.0602)

φ21 −0.0179∗∗(0.0079) 0.0363(0.0911)

φ24 0.0141∗(0.0082) −0.1425∗∗(0.0557)

φ25 −0.0218∗∗∗(0.0081) −0.1011∗(0.0608)

φ26 −0.0181∗∗(0.0076) −0.0283(0.1008)

φ27 0.0096(0.0082) −0.0326(0.0737)

φ29 0.0100(0.0078) 0.1481∗(0.0766)

θ NA 0.1371∗∗∗(0.0112)

ω 0.0000∗∗∗(0.0000) −0.0534∗∗∗(0.0082)

α 0.0861∗∗∗(0.0111) 0.0442∗∗∗(0.0030)

β 0.9057∗∗∗(0.0112) 0.9893∗∗∗(0.0016)

λ0 0.0000(0.0000) −5.5522∗∗∗(0.3265)

ν NA 7.1428∗∗∗(0.4327)

SVar 0.9919 0.9893

mean LL 3.4085 3.4357

mean AIC −6.8142 −6.8684

mean BIC −6.8036 −6.8569

mean HQC −6.8107 −6.8646

c for dt = c+ εt NA 0.0273∗∗∗(0.0051)

LB statistic 24.2383 23.1951

LB p-value 0.9767 0.9845

Notes: Autoregressive (AR); generalized autoregressive conditional heteroscedasticity (GARCH); quasi-AR

(QAR); exponential GARCH (EGARCH); not available (NA); log-likelihood (LL); Akaike information criterion

(AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion (HQC); Ljung–Box (LB). SVar is the

covariance stationarity in the variance statistic. dt = c + εt is estimated by using ordinary least squares (OLS)

with heteroscedasticity and autocorrelation consistent (HAC) standard error. Robust standard errors are shown

in parentheses. *, ** and *** indicate parameter significance at the 10%, 5% and 1% levels, respectively.
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Table 3. Forecast performance, OLS–HAC estimates of c for the linear regression dt = c+ εt

(D1) All days of the in-sample data window:

Expected return 8.8061E-06∗∗(4.1621E-06) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 5.0938E-05∗∗∗(8.1275E-06) QAR-Beta-t-EGARCH is superior to AR-GARCH

(D2) Each day for which an outlier is observed (|yt − µ| ≥ 3σ):

Expected return 1.4198E-04(1.1589E-04) Models are identical

Volatility -1.2971E-03∗∗∗(2.8109E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D2) Each day for which an outlier is observed (|yt − µ| ≥ 4σ):

Expected return 2.6067E-04(2.5278E-04) Models are identical

Volatility -2.6565E-03∗∗∗(5.9441E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D2) Each day for which an outlier is observed (|yt − µ| ≥ 5σ):

Expected return 4.0602E-04(4.8409E-04) Models are identical

Volatility -4.4296E-03∗∗∗(1.0427E-03) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D3) The trading day after each day for which an outlier is observed (|yt − µ| ≥ 3σ):

Expected return 5.3342E-04∗∗∗(1.4761E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 7.5792E-04∗∗(3.4555E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

(D3) The trading day after each day for which an outlier is observed (|yt − µ| ≥ 4σ):

Expected return 1.0119E-03∗∗∗(3.0816E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 9.6337E-04(7.8732E-04) Models are identical

(D3) The trading day after each day for which an outlier is observed (|yt − µ| ≥ 5σ):

Expected return 1.5911E-03∗∗∗(5.8619E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 4.0287E-04(1.4763E-03) Models are identical

Notes: Ordinary least squares (OLS); heteroscedasticity and autocorrelation consistent (HAC); autoregressive

(AR); generalized autoregressive conditional heteroscedasticity (GARCH); quasi-AR (QAR); exponential GARCH

(EGARCH). µ and σ denote the unconditional mean and unconditional standard deviation, respectively, of yt.

Robust standard errors are shown in parentheses. ** and *** indicate parameter significance at the 5% and 1%

levels, respectively.
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Updating of µt: εt for AR (thin line), et for QAR (thick line, ν̂ = 7.1428)

Updating of λt: ε
2
t for GARCH (thin line), ut for Beta-t-EGARCH (thick line, ν̂ = 7.1428)

Fig. 1. Updating of µt and λt after news, as a function of εt.
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Chapter 2

Forecasting following appearance of extreme values when

using AR-GARCH and QAR-Beta-t-EGARCH

Szabolcs Blazsek, Daniela Carrizo, Ricardo Eskildsen and Humberto Gonzalez

School of Business, Universidad Francisco Marroqúın, Guatemala City, Guatemala

Abstract: We undertake a systematic review of the return and volatility predictive perfor-

mances of the standard AR-GARCH and the recent QAR-Beta-t-EGARCH models. We use

historical data from the Dow Jones Industrial Average (DJIA) index for the hundred-year pe-

riod of May 1896 to March 2017. We compare predictive performances for those days when

extreme value is observed, and also for the trading day after each day when extreme value is ob-

served. We use alternative definitions of extreme values, according to the Chebyshev inequality.

We find that AR-GARCH dominates QAR-Beta-t-EGARCH for each day for which an extreme

value is observed, and QAR-Beta-t-EGARCH dominates AR-GARCH for the trading day after

each day for which an extreme value is observed.

Keywords: dynamic conditional score (DCS) models; QAR (quasi-autoregressive) model; Beta-

t-EGARCH model; extreme values

JEL classification: C22, C52, C58
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I. Introduction

Harvey (2013, p. 133) presents an application of GARCH (generalized autoregressive conditional

heteroscedasticity) (Bollerslev 1986; Taylor 1986) and Beta-t-EGARCH (exponential GARCH)

(Harvey and Chakravarty 2008), both with leverage effects, for the Dow Jones Industrial Average

(DJIA) index. Harvey (2013) uses data for period October 1975 to August 2009, including

Black Monday (19th October 1987, when DJIA declined 22.61%). Harvey (2013) notes that the

conditional volatility estimates for GARCH and Beta-t-EGARCH exhibit a marked difference

after the appearance of extreme values.

Motivated by Harvey (2013), we undertake a systematic review of the return and volatility

forecast performances of AR (autoregressive) (Box and Jenkins 1970) plus GARCH and QAR

(quasi-AR) (Harvey 2013) plus Beta-t-EGARCH, for the DJIA index. We study forecast perfor-

mances for those days when extreme value is observed, and also for the trading day after each

day when extreme value is observed.

II. Data

We use historical time-series data for the daily closing value pt of DJIA for period May 1896 to

March 2017 (source: S&P Dow Jones Indices, http://www.djaverages.com, accessed 12th March

2017). We estimate all models for the daily log-return yt = ln(pt/pt−1) for days t = 1, . . . , T (for

p0, we use pre-sample data). We present some descriptive statistics of yt in Table 1.

[APPROXIMATE LOCATION OF TABLE 1]

III. Econometric models

Firstly, the AR(p)-GARCH(1,1) model with leverage effects is

yt = µt + vt = µt + λ
1/2
t εt with εt ∼ N(0, 1) i.i.d. (13)

µt = c+

p∑
j=1

φjyt−j = c+

p∑
j=1

φj

(
µt−j + λ

1/2
t−jεt−j

)
(14)

λt = ω + [α + α∗
1(vt−1 < 0)]v2

t−1 + βλt−1 = ω + [α + α∗
1(εt−1 < 0)]λtε

2
t + βλt−1 (15)
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for t = 1, . . . , T , where 1(·) is the indicator function. The conditional mean and volatility of yt

are µt and λ
1/2
t , respectively. The initial value of λt is estimated by parameter λ0.

Secondly, the QAR(p)-Beta-t-EGARCH(1,1) model with leverage effects is

yt = µt + vt = µt + exp(λt)εt with εt ∼ t(ν) i.i.d. (16)

µt = c+

p∑
j=1

φjµt−j + θet−1 = c+

p∑
j=1

φjµt−j + θ

[
ν exp(λt−1)εt−1

ν + ε2t−1

]
(17)

λt = ω + αut−1 + α∗sgn(−vt−1)(ut−1 + 1) + βλt−1 (18)

for t = 1, . . . , T , where sgn(·) is the signum function and ut = [(ν + 1)ε2t ]/[ν + ε2t ] − 1. The

conditional mean and volatility of yt are µt and exp(λt)[ν/(ν − 2)]1/2, respectively. The initial

value of λt is estimated by parameter λ0.

The marked difference between the conditional volatility estimates of GARCH and Beta-

t-EGARCH (Harvey 2013, p. 133), is due to the way in which λt is updated after market

news arrives. We present the updating terms of AR-GARCH and QAR-Beta-t-EGARCH as

functions of εt, in Fig. 1. The impact of εt is not discounted in the case of AR due to the linear

transformation, and it is accentuated for GARCH due to the quadratic transformation. On the

other hand, for QAR-Beta-t-EGARCH, εt is discounted for both µt and λt.

[APPROXIMATE LOCATION OF FIGURE 1]

IV. Statistical inference

All models in this paper are estimated by using the maximum likelihood (ML) method (Davidson

and MacKinnon 2003). The ML estimator is

Θ̂ML = arg max
Θ

LL = arg max
Θ

T∑
t=1

ln f(yt|y1, . . . , yt−1) (19)

where Θ is the vector of time-constant parameters and LL is log-likelihood. We use the sandwich

covariance matrix estimator to compute robust standard errors of parameters.

We focus on the conditions of the Gaussian central limit theory (GCLT) of the ML estimator
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for λt (we assume that GCLT conditions for µt are satisfied for both the AR(p) and QAR(p)).

The GCLT conditions for GARCH with leverage effects hold if (Jensen and Rahbek 2004)

GCLTλ = E{β/[(α + α∗/2)εt + β]} < 1 (we estimate this expectation by the sample average).

The GCLT conditions for Beta-t-EGARCH with leverage effects hold if (Harvey 2013):

GCLTλ = β2 − αβ 4ν

ν + 3
+ [α2 + (α∗)2]

12ν(ν + 1)(ν + 2)

(ν + 7)(ν + 5)(ν + 3)
< 1 (20)

V. Estimation results

Firstly, in order to identify the lag structure of AR(p) and QAR(p), we estimate the partial

autocorrelation function (PACF) (Hamilton 1994) of yt up to 30 lags. We consider those lags

only, for which PACF is different from zero, at least at the 10% level of significance. For the

initial days of the dataset, we use pre-sample data for yt−j and µt−j (the 30-day pre-sample period

is from 26th May 1896 to 1st July 1896). In Table 1, we present the ML estimates and model

diagnostics for AR-GARCH and QAR-Beta-t-EGARCH. We find significant φj parameters for

several lags; we find that θ is significant for QAR; we find that α, α∗ and β are all significantly

different from zero for both GARCH and Beta-t-EGARCH.

Secondly, we use the following statistical performance metrics: (i) mean LL = LL/T ; (ii)

mean Akaike information criterion (AIC), mean AIC = 2K/T−2LL/T (K denotes the number of

parameters); (iii) mean Bayesian information criterion (BIC), mean BIC = ln(T )K/T −2LL/T ;

(iv) mean Hannan-Quinn criterion (HQC), mean HQC = 2K ln[ln(T )]/T − 2LL/T . All metrics

suggest that QAR-Beta-t-EGARCH is superior to AR-GARCH.

Thirdly, we use the non-nested likelihood-ratio (LR) test (Vuong 1989) to study whether the

mean LL values of AR-GARCH and QAR-Beta-t-EGARCH are significantly different. We define

dt = ln f(yt|y1, . . . , yt−1)−ln g(yt|y1, . . . , yt−1) for t = 1, . . . , T , where f and g are the conditional

density functions of QAR-Beta-t-EGARCH and AR-GARCH, respectively. We estimate the lin-

ear regression model dt = c+εt for t = 1, . . . , T , by using ordinary least squares (OLS) with het-

eroscedasticity and autocorrelation consistent (HAC) standard errors (Newey and West 1987).
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For the estimate of c, we find 0.0304∗∗∗(0.0041), i.e. c is positive and significantly different from

zero. Hence, mean LL of QAR-Beta-t-EGARCH is superior to that of AR-GARCH.

Fourthly, we use the Ljung–Box (1978) test (hereafter, LB test) with the lag order 30 for

the residual time-series (ε̂1, . . . , ε̂T ). Under the null hypothesis of the LB test, (ε1, . . . , εT ) are

independent. We find that this null hypothesis is supported for both AR-GARCH and QAR-

Beta-t-EGARCH.

VI. Predictive performance for extreme values

We use data for: (D1) each day on which an extreme value is observed, and (D2) the trading

day after each day on which an extreme value is observed. We define extreme values by using

the Chebyshev inequality

Pr(|yt − µ| ≥ kσ) ≤ 1

k2
for k > 1 (21)

where µ and σ are the unconditional mean and unconditional standard deviation of yt, respec-

tively. We estimate µ and σ by using µ̂ =
∑T

t=1 yt/T and σ̂ = [
∑T

t=1(yt− µ̂)2/(T −1)]1/2, respec-

tively. For the selection of k, we consider the alternatives k = 3, 4, 5 and 6, which correspond

to 11.11%, 6.25%, 4.00% and 2.78% upper bounds of probability, respectively, in Equation (9).

We consider an observation of yt as an extreme value if |yt− µ̂| ≥ kσ̂. For k = 3, 4, 5 and 6, the

number of days with extreme values are 516 (1.57%), 224 (0.68%), 100 (0.30%) and 52 (0.15%),

respectively, from T = 32, 865 days (100%).

The one-step ahead return forecasts for AR-GARCH and QAR-Beta-t-EGARCH are f1y,t =

µ̂t and f2y,t = µ̂t, respectively. The one-step ahead volatility forecasts for AR-GARCH and

QAR-Beta-t-EGARCH are f1σ,t = λ̂
1/2
t and f2σ,t = exp(λ̂t)[ν̂/(ν̂ − 2)]1/2, respectively. We

compare the return forecasts with yt. We compare the volatility forecasts with |yt| (the work of

Day and Lewis [1992] motivates the use of |yt| as a proxy of true volatility).

For each day, we measure predictive accuracy by using the Absolute Error (AE) metric. For

the return forecasts of AR-GARCH and QAR-Beta-t-EGARCH, we use AE1y,t = |yt−f1y,t| and
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AE2y,t = |yt − f2y,t|, respectively. For the volatility forecasts of AR-GARCH and QAR-Beta-t-

EGARCH, we use AE1σ,t = ||yt|− f1σ,t| and AE2σ,t = ||yt|− f2σ,t|, respectively. For each day, we

compare AE of AR-GARCH and QAR-Beta-t-EGARCH, by using dy,t = AE1y,t − AE2y,t (for

return forecasting) and dσ,t = AE1σ,t − AE2σ,t (for volatility forecasting). We test whether the

mean AE is significantly different from zero, by using the linear regression models dy,t = c + εt

and dσ,t = c + εt, both estimated by OLS–HAC. A significant and positive c indicates that

the predictive performance of QAR-Beta-t-EGARCH is superior to that of AR-GARCH. A

significant and negative c indicates that the predictive performance of AR-GARCH is superior

to that of QAR-Beta-t-EGARCH.

We present the estimates of c in Table 2. For (D1), the volatility prediction of AR-GARCH

dominates for all extreme value definitions, and we also find that the return prediction of AR-

GARCH dominates for k = 6. According to this result, if tomorrow there would be an extreme

value, then AR-GARCH would be used for forecasting. For (D2), the return prediction of QAR-

Beta-t-EGARCH dominates for all extreme value definitions, and we also find that the volatility

prediction of QAR-Beta-t-EGARCH dominates for k = 3, 4, 5. According to this result, if there

was an extreme value today, then QAR-Beta-t-EGARCH would be used for forecasting.

[APPROXIMATE LOCATION OF TABLE 2]
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Table 1. Descriptive statistics, parameter estimates and model diagnostics

Descriptive statistics AR-GARCH QAR-Beta-t-EGARCH

Start date 26th May 1896 c 0.0002∗∗∗(0.0000) 0.0000∗∗∗(0.0000)

End date 10th March 2017 φ1 0.0837∗∗∗(0.0066) −0.4427∗∗∗(0.0986)

Sample size T 32, 865 φ2 −0.0111∗(0.0062) −0.2238∗(0.1265)

Minimum −0.2682 φ3 0.0152∗∗(0.0062) 0.0824(0.1084)

Maximum 0.1427 φ4 0.0187∗∗∗(0.0062) 0.3417∗∗∗(0.0740)

Mean 0.0002 φ5 0.0127∗∗(0.0062) 0.4226∗∗∗(0.0993)

SD 0.0110 φ6 −0.0030∗(0.0065) 0.2608(0.1547)

Skewness −0.9622 φ7 −0.0096∗(0.0060) 0.2682∗∗(0.1183)

Excess kurtosis 30.6428 φ8 0.0117(0.0061) 0.0714(0.0710)

φ10 0.0124∗∗(0.0060) −0.0216∗(0.0658)

φ12 0.0082(0.0059) 0.0278(0.0614)

φ16 0.0068(0.0057) 0.0661(0.0794)

φ20 0.0060(0.0059) 0.0106(0.0665)

φ26 −0.0088∗(0.0056) −0.0775∗(0.0687)

φ27 0.0065(0.0056) −0.1201∗(0.0870)

φ29 0.0147∗∗(0.0059) 0.1518∗∗(0.0690)

φ30 0.0026(0.0060) 0.0508(0.0520)

θ NA 0.1034∗∗∗(0.0089)

ω 0.0000∗∗∗(0.0000) −0.0636∗∗∗(0.0072)

α 0.0353∗∗∗(0.0041) 0.0415∗∗∗(0.0022)

α∗ 0.1088∗∗∗(0.0139) 0.0225∗∗∗(0.0014)

β 0.8944∗∗∗(0.0090) 0.9873∗∗∗(0.0015)

λ0 0.0003(0.0002) −4.1309∗∗∗(0.3957)

ν NA 6.3818∗∗∗(0.2337)

LL 3.3218 3.3522

AIC −6.6422 −6.7029

BIC −6.6366 −6.6967

HQC −6.6404 −6.7009

GCLTλ 0.9262 0.8707

LB statistic 17.3956 15.1964

LB p-value 0.9675 0.9886

Notes: Not available (NA). Robust standard errors are in parentheses.

*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Table 2. Predictive performance

(D1) |yt − µ| ≥ 3σ:

Expected return 4.5137E-06(2.2121E-04) AR-GARCH and QAR-Beta-t-EGARCH are identical

Volatility −1.4557E-03∗∗∗(2.2121E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D1) |yt − µ| ≥ 4σ:

Expected return −2.2605E-04(1.5293E-04) AR-GARCH and QAR-Beta-t-EGARCH are identical

Volatility −2.5490E-03∗∗∗(4.4906E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D1) |yt − µ| ≥ 5σ:

Expected return −4.0676E-04(2.7928E-04) AR-GARCH and QAR-Beta-t-EGARCH are identical

Volatility −4.0282E-03∗∗∗(9.5615E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D1) |yt − µ| ≥ 6σ:

Expected return −8.4623E-04∗∗(3.5905E-04) AR-GARCH is superior to QAR-Beta-t-EGARCH

Volatility −6.0126E-03∗∗∗(1.9150E-03) AR-GARCH is superior to QAR-Beta-t-EGARCH

(D2) |yt − µ| ≥ 3σ:

Expected return 5.9304E-04∗∗∗(1.1380E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 1.3087E-03∗∗∗(3.5999E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

(D2) |yt − µ| ≥ 4σ:

Expected return 8.2777E-04∗∗∗(2.3840E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 1.7352E-03∗∗∗(5.6340E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

(D2) |yt − µ| ≥ 5σ:

Expected return 1.4739E-03∗∗∗(5.5474E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 1.8081E-03∗(1.0236E-03) QAR-Beta-t-EGARCH is superior to AR-GARCH

(D2) |yt − µ| ≥ 6σ:

Expected return 2.3238E-03∗∗(8.8787E-04) QAR-Beta-t-EGARCH is superior to AR-GARCH

Volatility 3.5994E-03(2.1960E-03) AR-GARCH and QAR-Beta-t-EGARCH are identical

Notes: Robust standard errors are in parentheses.

*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Updating of µt: εt for AR (thin line), et for QAR (thick line, ν̂ = 6.3818)

Updating of λt: ε
2
t for GARCH (thin line), ut for Beta-t-EGARCH (thick line, ν̂ = 6.3818)

Fig. 1. Updating of µt and λt after news, as a function of εt.
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