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Abstract. In this paper, we contribute to the body of literature of Dynamic Conditional

Score (DCS) models as follows. We introduce the dynamic Skew-Gen-t (skewed generalized

t distribution) and the dynamic NIG (Normal-Inverse Gaussian distribution) location models,

which are alternatives to the dynamic Student’s-t and the dynamic EGB2 (Exponential Gen-

eralized Beta distribution of the second kind) location models, respectively. The DCS models

of this paper include the stochastic local level component, the stochastic seasonality compo-

nent, and the irregular component with DCS-EGARCH (exponential generalized autoregressive

conditional heteroscedasticity) scale dynamics. We show that the Skew-Gen-t location model

performs a smooth form of trimming of extreme observations, similar to the Student’s-t location

model. We also show that the NIG location model performs a smooth form of Winsorizing

of extreme observations, similar to the EGB2 location model. As an illustration, we use data

from the Guatemalan Quetzal (GTQ) to United States Dollar (USD) exchange rate for period

4 January 1994 to 30 June 2017. The use of these data is interesting for the new DCS models,

since: (i) GTQ/USD has significant jumps and falls for the data window; (ii) GTQ/USD has

a stochastic annual seasonality component; (iii) GTQ/USD has significant volatility dynamics.

Our main results are the following: (i) The statistical performance of Skew-Gen-t-DCS is supe-

rior to that of Student’s-t-DCS. (ii) The statistical performance of NIG-DCS is superior to that

of EGB2-DCS. (iii) For the new DCS models, we find that Skew-Gen-t-DCS discounts extreme

observations more effectively than NIG-DCS.
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1. Introduction

Harvey (2013, Chapter 3.6) and Harvey and Luati (2014) introduce the dynamic Student’s-t

location model that includes both stochastic local level and stochastic seasonality components.

The Student’s-t location model is in the family of Dynamic Conditional Score (DCS) models

(Harvey 2013). For DCS models, each dynamic equation is updated by the conditional score of

the Log-Likelihood (LL) (hereinafter, score function) with respect to a time-varying parameter.

The score function discounts extreme observations, by reducing the effect of the irregular time-

series component vt when dynamic equations are updated. Therefore, DCS models are robust

to extreme observations (Harvey 2013).

More recently, Caivano et al. (2016) introduce the dynamic EGB2 (Exponential Generalized

Beta distribution of the second kind) location model, which also includes stochastic local level

and stochastic seasonality components. Caivano et al. (2016) compare the dynamic Student’s-t

location and the dynamic EGB2 location models, and demonstrate that extreme observations

are discounted in different ways in those models. For the Student’s-t location model, the score

function converges to zero as |vt| → ∞; this type of discounting of extreme observations is

described as a soft form of trimming. For the EGB2 location model, the score function converges

to a positive or negative non-zero value as |vt| → ∞; this type of discounting of extreme

observations is described as a soft form of Winsorizing. As to which type of discounting is

more effective, it is an open question in the body of the relevant DCS literature (Harvey 2013,

Chapter 3.6; Harvey and Luati 2014; Caivano et al. 2016).

In this paper, we contribute to the body of literature on the following points: (i) We introduce

the dynamic Skew-Gen-t (skewed generalized t distribution) location model with stochastic local

level and stochastic seasonality components, and show that this model performs a soft form of

trimming, similar to the dynamic Student’s-t location model. (ii) We introduce the dynamic NIG

(Normal-Inverse Gaussian distribution) (Barndorff-Nielsen and Halgreen 1977) location model

with stochastic local level and stochastic seasonality components, and show that this model

performs a soft form of Winsorizing, similar to the dynamic EGB2 location model. (iii) We
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use DCS-EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity)

(Harvey 2013) scale dynamics for the irregular component in all models that include stochastic

local level and stochastic seasonality components.

As an illustration, we use daily data from the Guatemalan Quetzal (GTQ) to United

States Dollar (USD) exchange rate (hereinafter, GTQ/USD or pt) for period 4 January 1994

to 30 June 2017. The use of these data is interesting for the new DCS models with stochastic

local level, stochastic seasonality and EGARCH, since: (i) GTQ/USD has significant jumps and

falls for the data window; (ii) GTQ/USD has a stochastic annual seasonality component; (iii)

GTQ/USD has significant volatility dynamics. We compare the statistical performance of alter-

native DCS specifications, analyze the determinants of the stochastic seasonality of GTQ/USD,

and compare the trimming and Winsorizing properties of different score functions.

Our main results are the following: (i) We find that the statistical performance of Skew-

Gen-t-DCS is superior to that of t-DCS. (ii) We also find that the statistical performance of

NIG-DCS is superior to that of EGB2-DCS. (iii) With respect to the new DCS models, we find

that Skew-Gen-t-DCS discounts extreme observations more effectively than NIG-DCS.

The remainder of this paper is organized as follows. Section 2 presents the econometric

framework. Section 3 presents the model specifications. Section 4 presents the corresponding

methods of statistical inference. Section 5 presents the empirical results. Section 6 concludes.

2. Econometric framework

The DCS model used in this paper is formulated as: pt = µt + st + vt = µt + st + exp(λt)εt for

days t = 1, . . . , T , where T denotes the number of time-series observations. This model includes

three score-driven components: the stochastic local level component µt, the stochastic annual

seasonality component st, and the irregular component vt. The irregular component is factorized

to the product of the dynamic scale parameter exp(λt) and the standardized error term εt. For

εt, we consider the Student’s-t, Skew-Gen-t, EGB2 and NIG distributions (see Section 3).

Firstly, the local level component µt = µt−1 + δuµ,t is updated by the score function uµ,t with

respect to µt (uµ,t is specified in Section 3), and uµ,t is scaled by parameter δ. We initialize µt
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by using the first observation p1. It is noteworthy that, as an alternative, we also consider the

use of parameter µ0 to initialize µt. We obtain very similar results for both cases, thus, in this

paper we only report results for µ1 = p1.

Secondly, the annual seasonality component is st = D′tρt = (DJan,t, DFeb,t, . . . , DDec,t)
′ρt,

where the monthly dummies Dj,t with j ∈ {Jan, . . . ,Dec} select an element from the 12 × 1

vector of dynamic variables ρt. The vector ρt is formulated as ρt = ρt−1 + γtuµ,t.

As suggested in the works of Harvey (2013, Chapter 3.6) and Harvey and Luati (2014), we

initialize ρt by estimating the equation pt = a+ bt+ cJanDJan,t + . . .+ cDecDDec,t + εt, under the

restriction cJan + . . . + cDec = 0. For this equation, we use data from the first year of the full

data window (i.e. the first 259 observations of the sample from year 1994), and estimate the

parameters by using the Non-linear Least Squares (NLS) method. The initial values of ρt are

given by the NLS estimates of (cJan, . . . , cDec)
′. It is noteworthy that, as an alternative, Harvey

(2013, Chapter 3.6) and Harvey and Luati (2014) also suggest estimating ρ1 as parameters of

the DCS model, jointly with the rest of the parameters. We aimed at estimating the parameters

of initial conditions of seasonality in this way, but the parameters of the joint model were not

identified for our dataset. Thus, we undertake the NLS estimation of ρ1 in a first step.

The vector ρt is updated by the score function uµ,t with respect to µt (Section 3), and uµ,t is

scaled by using the 12×1 vector of dynamic parameters γt. Each element of the γt vector is given

by γjt = γj for Djt = 1 and γjt = −γj/(12 − 1) for Djt = 0, where γj with j ∈ {Jan, . . . ,Dec}

are seasonality parameters to be estimated. This specification ensures that the sum of the

seasonality parameters is zero, hence, st has mean zero and it is effectively separated from µt.

Thirdly, we model the time-varying scale of the irregular component vt by using the DCS-

EGARCH model λt = ω+βλt−1+αuλ,t−1, which is updated by the score function uλ,t with respect

to λt (uλ,t is specified in Section 3). We initialize λt by using parameter λ0. It is noteworthy

that, as an alternative, we also consider DCS-EGARCH with leverage effects (Harvey 2013,

Chapter 4.3). However, we find that the parameter measuring leverage effects is not significantly

different from zero for the GTQ/USD dataset used in this paper. In the body of literature, DCS-
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EGARCH for the Student’s-t, Skew-Gen-t, EGB2 and NIG distributions is named as Beta-t-

EGARCH (Harvey and Chakravarty 2008), Skew-Gen-t-EGARCH (Harvey and Lange 2017),

EGB2-EGARCH (Caivano and Harvey 2014) and NIG-EGARCH. To the best of our knowledge,

NIG-EGARCH has not yet been considered in the body of DCS literature.

3. Model specifications

We use four alternative probability distributions for εt. For each alternative, we present the log of

the conditional density of pt, and the score functions uµ,t and uλ,t. Firstly, εt ∼ t[0, 1, exp(ν)+2]

is the Student’s t-distribution, where ν ∈ IR influences tail-thickness. This specification of

degrees of freedom ensures a finite conditional variance of pt. The log-density of pt is

ln f(pt|p1, . . . , pt−1) = ln Γ

[
exp(ν) + 3

2

]
− ln Γ

[
exp(ν) + 2

2

]
(1)

− ln(π) + ln[exp(ν) + 2]

2
− λt −

exp(ν) + 3

2
ln

{
1 +

ε2t
exp(ν) + 2

}
where Γ(x) is the gamma function. The score function uµ,t is given by

∂ ln f(pt|p1, . . . , pt−1)

∂µt
=

exp(λt)εt
ε2t + exp(ν) + 2

× exp(ν) + 3

exp(2λt)
= uµ,t ×

exp(ν) + 3

exp(2λt)
(2)

where uµ,t is defined by the second equality. The score function uλ,t is

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt
=

[exp(ν) + 3]ε2t
exp(ν) + 2 + ε2t

− 1 (3)

Secondly, εt ∼ Skew-Gen-t[0, 1, tanh(τ), exp(ν) + 2, exp(η)] (McDonald and Michelfelder 2017),

where tanh(x) is the hyperbolic tangent function, and τ ∈ IR, ν ∈ IR and η ∈ IR influence the

asymmetry, tail-thickness and peakedness, respectively. Our degrees of freedom specification

ensures a finite conditional variance of pt. The log-density of pt is

ln f(pt|p1, . . . , pt−1) = η − λt − ln(2)− ln[exp(ν) + 2]

exp(η)
− ln Γ

[
exp(ν) + 2

exp(η)

]
(4)
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− ln Γ[exp(−η)] + ln Γ

[
exp(ν) + 3

exp(η)

]

−exp(ν) + 3

exp(η)
ln

{
1 +

|εt|exp(η)

[1 + tanh(τ)sgn(εt)]exp(η) × [exp(ν) + 2]

}
where sgn(x) is the signum function. The score function uµ,t is given by

∂ ln f(pt|p1, . . . , pt−1)

∂µt
=

exp(λt)εt|εt|exp(η)−2

|εt|exp(η) + [1 + tanh(τ)sgn(εt)]exp(η)[exp(ν) + 2]
× exp(ν) + 3

exp(2λt)
(5)

= uµ,t ×
exp(ν) + 3

exp(2λt)

where uµ,t is defined by the second equality. The score function uλ,t is

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt
=

|εt|exp(η)[exp(ν) + 3]

|εt|exp(η) + [1 + tanh(τ)sgn(εt)]exp(η)[exp(ν) + 2]
− 1 (6)

Thirdly, εt ∼ EGB2[0, 1, exp(ξ), exp(ζ)], where ξ ∈ IR and ζ ∈ IR influence both asymmetry and

tail-thickness. The log-density of pt is

ln f(pt|p1, . . . , pt−1) = exp(ξ)εt − λt − ln Γ[exp(ξ)]− ln Γ[exp(ζ)] (7)

+ ln Γ[exp(ξ) + exp(ζ)]− [exp(ξ) + exp(ζ)] ln[1 + exp(εt)]

The score function uµ,t is given by

∂ ln f(pt|p1, . . . , pt−1)

∂µt
= uµ,t × {Ψ(1)[exp(ξ)] + Ψ(1)[exp(ζ)]} exp(2λt) (8)

uµ,t = {Ψ(1)[exp(ξ)] + Ψ(1)[exp(ζ)]} exp(λt)

{
[exp(ξ) + exp(ζ)]

exp(εt)

exp(εt) + 1
− exp(ξ)

}
(9)

where Ψ(1)(x) is the trigamma function. Furthermore, the score function uλ,t is

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt
= [exp(ξ) + exp(ζ)]

εt exp(εt)

exp(εt) + 1
− exp(ξ)εt − 1 (10)
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Fourthly, εt ∼ NIG[0, 1, exp(ν), exp(ν)tanh(η)], where ν ∈ IR and η ∈ IR influence tail-thickness

and asymmetry, respectively. The log-density of pt is

ln f(pt|p1, . . . , pt−1) = ν − λt − ln(π) + exp(ν)[1− tanh2(η)]1/2 (11)

+ exp(ν)tanh(η)εt + lnK(1)
[
exp(ν)

√
1 + ε2t

]
− 1

2
ln(1 + ε2t )

where K(1)(x) is the modified Bessel function of the second kind of order 1. The score function

uµ,t is given by

∂ ln f(pt|p1, . . . , pt−1)

∂µt
= − exp(ν − λt)tanh(η) +

εt
exp(λt)(1 + ε2t )

(12)

+
exp(ν − λt)εt√

1 + ε2t
×
K(0)

[
exp(ν)

√
1 + ε2t

]
+K(2)

[
exp(ν)

√
1 + ε2t

]
2K(1)

[
exp(ν)

√
1 + ε2t

]
uµ,t =

∂ ln f(pt|p1, . . . , pt−1)

∂µt
× exp(2λt) (13)

where K(0)(x) and K(2)(x) are the modified Bessel functions of the second kind of orders 0 and 2,

respectively. The score function uλ,t is

uλ,t =
∂ ln f(pt|p1, . . . , pt−1)

∂λt
= −1− exp(ν)tanh(η)εt +

ε2t
1 + ε2t

(14)

+
exp(ν)ε2t√

1 + ε2t
×
K(0)

[
exp(ν)

√
1 + ε2t

]
+K(2)

[
exp(ν)

√
1 + ε2t

]
2K(1)

[
exp(ν)

√
1 + ε2t

]
4. Statistical inference

The DCS specifications of this paper are estimated by using the Maximum Likelihood (ML)

method (Davidson and MacKinnon 2003). The ML estimator is given by

Θ̂ML = arg max
Θ

LL(p1, . . . , pT ; Θ) = arg max
Θ

T∑
t=1

ln f(pt|p1, . . . , pt−1) (15)
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where Θ denotes the vector of time-constant parameters. The standard errors of parameters

are estimated by using the inverse information matrix (Harvey 2013). For some parameters, we

estimate their transformed values, and use the delta method to estimate the standard errors of

those parameters (Davidson and MacKinnon 2003). For DCS-EGARCH(1,1), sufficient condi-

tions for the consistency and asymptotic normality of the ML estimates are demonstrated in

the work of Harvey (2013). For the first-order DCS model, Harvey (2013, Chapter 2.3.2) defines

Cλ = β2 + 2βαE(∂uλ,t/∂λt) + α2E[(∂uλ,t/∂λt)
2]. We estimate Cλ for each DCS specification of

the present paper. Two conditions for DCS-EGARCH(1,1) are |β| < 1 and Cλ < 1.

5. Empirical results

5.1. GTQ/USD exchange rate

As an illustration, we use GTQ/USD exchange rate data in this paper. The source of those data

is the Bank of Guatemala (we present some specific details of the data source in the notes of

Table 1). The GTQ/USD exchange rate pt is available from 6 November 1989, when GTQ/USD

started to float in the foreign currency market. Until 1994, the Bank of Guatemala used a pegged

float exchange rate regime, for which the rate was allowed to fluctuate within a specific band.

For period 6 November 1989 to 31 December 1993, the GTQ/USD time series shows constant

level periods with zero volatility, step-function like evolution in other periods, and significant

jumps or falls on some days (Figs. 1(a-b)). The new DCS models suggested in this paper are

not adequate for the GTQ/USD time series of this period.

From 1994, a managed float regime was introduced, and GTQ/USD became more volatile.

In 1997 and 1998, GTQ depreciated in relation to the effects of the Asian Financial Crisis and

the Russian Financial Crisis, respectively (Figs. 1(c-d)). In 1999, both demand and price of

the goods exported from Guatemala decreased significantly, and GTQ significantly depreciated

again (Figs. 1(c-d)) due to a negative current account and a negative capital account in the

same year. As a consequence, the Bank of Guatemala intervened in the GTQ/USD exchange

rate market in August 1999.

In May 2001, the Congress of the Republic of Guatemala approved the Law of Free For-
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eign Currency Transactions (Act No: 94-2000), and created the Institutional Foreign Currency

Market (hereinafter, MID). Those institutions that participate in MID are obliged to report all

foreign currency transactions, on a daily basis, to the Bank of Guatemala. The current exchange

rate regime in Guatemala allows the participation of the Bank of Guatemala in MID. Since 2006,

the rules of intervention of the Bank of Guatemala are officially published, and are known by

the participants of MID.

In this study, we use data for period 4 January 1994 to 30 June 2017 (Figs. 1(c-d)). The

Bank of Guatemala reports bid and ask prices for GTQ/USD for seven days of the week (it is

noteworthy that Guatemalan banks are open seven days in every week). We use the average of

bid and ask prices for each day. We use data for every Monday to Friday from the data window.

We do not include bank holidays and weekends in the dataset, since MID undertakes foreign

currency transactions only from Monday to Friday (thus, GTQ/USD does not change during the

weekend). It is noteworthy that, as an extension of our model, we have also considered a weekly

stochastic seasonality component of GTQ/USD, for the data used in this paper. However, we

have found that the weekly seasonality is not significantly different from zero.

We present some descriptive statistics for the GTQ/USD level pt and the GTQ/USD log-

return ln(pt/pt−1) time series in Table 1. We also present results for the Augmented Dickey–

Fuller (1979) (hereinafter, ADF) test in Table 1, which suggest that pt is a I(1) process, and

thus motivate the use of the local level component with unit root in the DCS model. In Table 1,

we also present the mean pt for each month of the year. Those mean pt estimates indicate the

following annual seasonality effects: (i) strengthening GTQ from December to May; (ii) relatively

stable GTQ from June to August; (iii) weakening GTQ from September to November. These

results motivate the use of the annual seasonality component st in the DCS model. Significant

jumps and falls in GTQ/USD are also observed in Fig. 1(c), which motivate the use of different

DCS specifications that differently discount extreme observations. Finally, significant volatility

clustering is observed in Fig. 1(d), which motivates the use of DCS-EGARCH.

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 1]
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5.2. Estimation results

Parameter estimates and model diagnostics are presented in Table 2. We find that all parameters

of the alternative DCS specifications are significantly different from zero. For all specifications,

the EGARCH estimates support the consistency and asymptotic normality of the ML estimator

(i.e. |β| < 1 and Cλ < 1) (Table 2).

We use the following metrics to compare statistical performance: mean LL, mean Akaike

Information Criterion (AIC), mean Bayesian Information Criterion (BIC) and mean Hannan-

Quinn Criterion (HQC) (Davidson and MacKinnon 2003). These metrics suggest that (i) Skew-

Gen-t-DCS is superior to t-DCS; (ii) NIG-DCS is superior to EGB2-DCS; (iii) all LL-based

statistical performance metrics support the use of Skew-Gen-t-DCS (Table 2).

We also perform a Likelihood-Ratio (LR) test for non-nested models (Vuong 1989). In the

LR test, we estimate the linear regression dt = c+ εt, where dt is the difference between the log-

densities of two models for day t. We estimate this equation by using the OLS-HAC estimator

(Ordinary Least Squares Heteroscedasticity and Autocorrelation Consistent) (Newey and West

1987). We find that Skew-Gen-t-DCS is superior to the alternative DCS models (Table 2).

[APPROXIMATE LOCATION OF TABLE 2]

5.3. Stochastic seasonality

Significant stochastic annual seasonality st estimates are shown in Figs. 2(a-d) for t-DCS, Skew-

Gen-t-DCS, EGB2-DCS and NIG-DCS, respectively. The annual seasonality component can

be explained by the evolution of agricultural product exports within each year. During period

December to May, the amount of USD entering Guatemala increases due to coffee, sugar, banana

and cardamom exports (it is noteworthy that Guatemala is the biggest cardamom producer and

exporter in the world). Therefore, during period December to May, GTQ becomes stronger

with respect to USD (Figs. 2(a-d)). For period June to August, the GTQ/USD exchange rate is

relatively stable. For period September to November, the amount of USD entering Guatemala

reduces due to the finish of agricultural product harvests. As a consequence, during period

September to November, GTQ becomes weaker with respect to USD (Figs. 2(a-d)).
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It is noteworthy that, in principle, the annual seasonality of GTQ/USD should not exist,

due to arbitrage trading in GTQ/USD. The reason why it still exists for the data window of

the present study is that Guatemalan banks offer to their clients GTQ/USD prices with a large

bid-ask spread. Thus, clients do not make use of arbitrage trading due to high transaction costs.

The amplitude of the annual seasonality component of GTQ/USD is dynamic (Figs. 2(a-d)).

The following three regimes with different amplitudes can be identified: (R1) 1994 to 2000; (R2)

2001 to 2008; (R3) 2009 to 2017 (Figs. 2(a-d)). These regimes are mainly due to the changing

importance of agricultural goods in Guatemalan exports. In what follows, we study these regimes

in three points, where each point is related to different foreign currency movements.

Firstly, in Table 3, we present the evolution of total exports from Guatemala and total

imports to Guatemala, for period 1993 to 2016. The growth rate of total exports from Guatemala

decreases over time: the mean growth rates of total exports for (R1), (R2) and (R3) are 15.1%,

7.8% and 3.4%, respectively (Table 3). This reduction in the growth rate of total exports

suggests a decreasing amplitude of the annual seasonality for periods (R1) to (R3).

Secondly, the relative importance of total exports, with respect to total currency inflows and

outflows, decreases for the data window. In Fig. 3, we present the relative importance of the

following foreign currency movements for (R1), (R2) and (R3): (i) total exports from Guatemala

(Fig. 3(a)); (ii) total imports to Guatemala (Fig. 3(b)); (iii) receipt of loans to Guatemala

(Fig. 3(c)); (iv) payment of loans from Guatemala (Fig. 3(d)); (v) remittances to Guatemala

of Guatemalans working abroad (Fig. 3(e)). For all cases, we compute relative importance with

respect to the sum of total inflows and total outflows of foreign currency. For each period (R1),

(R2) and (R3), we estimate average relative importance separately for each month. We find

that the relative importance of total exports, on average, significantly decreases from (R1) to

(R2) and (R3) (Fig. 3(a)). Furthermore, we also find that the relative importance of loans

and remittances that do not have a significant seasonality component, on average, significantly

increases from (R1) to (R3) (Figs. 3(c-e)). These results also support that the amplitude of the

seasonality component of GTQ/USD reduces for the data window.
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Thirdly, a further explanation for the reduction of the amplitude of the annual seasonality

component is the reduction of the relative importance of agricultural product exports within total

exports. In Table 4, we present the export income from coffee, sugar, banana and cardamom,

which, as aforementioned, are the main agricultural export products of Guatemala. The relative

importance of these products has significantly reduced during period 1994 to 2016 (Table 4).

[APPROXIMATE LOCATION OF TABLES 3, 4 AND FIGURES 2, 3]

5.4. Trimming and Winsorizing

The score functions uµ,t and uλ,t of t-DCS, Skew-Gen-t-DCS, EGB2-DCS and NIG-DCS are

presented in Figs. 4(a-d), respectively. We evaluate all score functions by using the ML estimates

of the shape parameters, and for λt we use its unconditional mean estimate ω̂/(1− β̂).

For t-DCS and Skew-Gen-t-DCS, uµ,t undertakes a smooth form of trimming (Fig. 4(a)). In

the central part of the distribution, observations are discounted more for t-DCS than for Skew-

Gen-t-DCS (Fig. 4(a)). In the extreme parts of the distribution, observations are discounted in

similar ways for t-DCS and Skew-Gen-t-DCS (Fig. 4(a)). Furthermore, for t-DCS and Skew-

Gen-t-DCS, uλ,t undertakes a smooth form of Winsorizing (Fig. 4(c)). In the central part of

the distribution, observations are discounted in similar ways for t-DCS and Skew-Gen-t-DCS

(Fig. 4(c)). In the extreme parts of the distribution, observations are discounted more for

Skew-Gen-t-DCS than for t-DCS (Fig. 4(c)). The LL-based metrics of Table 2 suggest that

discounting of extreme values of Skew-Gen-t-DCS is more effective than that of t-DCS.

For EGB2-DCS and NIG-DCS, uµ,t undertakes a smooth form of Winsorizing (Fig. 4(b)),

and uλ,t increases linearly as |εt| → ∞ (Figs. 4(b, d)). We find that, for both uµ,t and uλ,t,

observations are discounted more for EGB2-DCS than for NIG-DCS (Figs. 4(b, d)). Moreover,

for both EGB2-DCS and NIG-DCS, observations are discounted in an asymmetric way with

respect to the left and right tails of the distribution (i.e. observations in the right tail are

discounted more than observations in the left tail by both uµ,t and uλ,t) (Fig. 4(d)). The LL-

based metrics presented in Table 2 suggest that discounting of extreme values of NIG-DCS is

more effective than that of EGB2-DCS.
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It is noteworthy that the functional form of uλ,t for EGB2-EGARCH and NIG-EGARCH can

be compared with the functional form of the updating term of the GARCH model (Bollerslev

1986; Taylor 1986), that is a quadratic function of εt. EGB2-EGARCH and NIG-EGARCH

are more robust for extreme observations than GARCH, due to more significant discounting of

extreme values (Fig. 4(d)). Moreover, Beta-t-EGARCH and Skew-Gen-t-EGARCH are more ro-

bust to extreme observations than EGB2-EGARCH and NIG-EGARCH, due to more significant

discounting of extreme values (Fig. 4(c-d)).

[APPROXIMATE LOCATION OF FIGURE 4]

6. Conclusions

In this paper, we have introduced the dynamic Skew-Gen-t and the dynamic NIG location

models, which are alternatives to the dynamic Student’s-t and the dynamic EGB2 location

models, respectively. We have shown that the Skew-Gen-t location model performs a smooth

form of trimming of extreme observations. We have also shown that the NIG location model

performs a smooth form of Winsorizing of extreme observations. We have considered DCS-

EGARCH scale dynamics in these DCS location models.

As an illustration, we have used daily data from GTQ/USD for period 4 January 1994 to

30 June 2017. We have found a significant stochastic seasonality component with a decreasing

amplitude over time. This decreasing amplitude may be explained by the following points:

(i) reducing growth rate of total exports; (ii) reducing relative importance of total exports,

and increasing relative importance of non-seasonal foreign currency movements (i.e. loans and

remittances); (iii) reducing relative importance of agricultural product exports to total exports.

For GTQ/USD, we have shown that the Skew-Gen-t-DCS model is superior to the Student’s-

t-DCS model, and we have also shown that the NIG-DCS model is superior to the EGB2-DCS

model. Furthermore, with respect to the new DCS models, we have shown that Skew-Gen-t-DCS

discounts extreme observations more effectively than NIG-DCS. The results presented in this

paper may motivate the use of the new Skew-Gen-t-DCS model for the GTQ/USD exchange

rate, by central bankers, policy makers, financial investors or private firms.
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Table 1. Descriptive statistics

Statistics GTQ/USD pt GTQ/USD ln(pt/pt−1) Month Mean pt

Start date 4 January 1994 4 January 1994 January 7.4087

End date 30 June 2017 30 June 2017 February 7.3819

Sample size 6, 128 6, 128 March 7.3590

Minimum 5.4939 −0.0199 April 7.3545

Maximum 8.3948 0.0192 May 7.3411

Average 7.3904 0.0000 June 7.3712

Standard deviation 0.7476 0.0017 July 7.3656

Skewness −1.2354 0.6494 August 7.3840

Excess kurtosis 0.0049 14.8366 September 7.4312

ADF statistic, constant −2.1142(0.2391) −13.6809∗∗∗(0.0000) October 7.4501

ADF statistic, constant plus trend −0.8073(0.9637) NA November 7.4298

ADF statistic, constant plus quadratic trend −2.2003(0.7293) NA December 7.4126

Guatemalan Quetzal (GTQ); United States Dollar (USD); Augmented Dickey–Fuller (ADF); Not Available (NA). p-values of

the ADF test are reported in parentheses. ∗∗∗ indicates significance at the 1% level. Source of data: Bank of Guatemala,

http://www.banguat.gob.gt/cambio/default.asp. Accessed 29 July 2017.
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Table 2. Parameter estimates and model diagnostics

t-DCS Skew-Gen-t-DCS EGB2-DCS NIG-DCS

δ 11.6767∗∗∗(0.2957) δ 9.6840∗∗∗(0.2568) δ 0.9985∗∗∗(0.0116) δ 0.3326∗∗∗(0.0105)

γJan −1.0548∗∗∗(0.0734) γJan −0.8595∗∗∗(0.0578) γJan −0.0835∗∗∗(0.0051) γJan −0.0279∗∗∗(0.0020)

γFeb 0.4225∗∗∗(0.0341) γFeb 0.3582∗∗∗(0.0284) γFeb 0.0361∗∗∗(0.0031) γFeb 0.0119∗∗∗(0.0011)

γMar −0.6163∗∗∗(0.0295) γMar −0.5109∗∗∗(0.0242) γMar −0.0525∗∗∗(0.0028) γMar −0.0176∗∗∗(0.0011)

γApr −0.3205∗∗∗(0.0903) γApr −0.3008∗∗∗(0.0741) γApr −0.0156∗(0.0092) γApr −0.0051∗(0.0030)

γMay 0.8895∗∗∗(0.0639) γMay 0.7650∗∗∗(0.0549) γMay 0.0736∗∗∗(0.0052) γMay 0.0242∗∗∗(0.0019)

γJun 1.1123∗∗∗(0.0656) γJun 0.8921∗∗∗(0.0494) γJun 0.0982∗∗∗(0.0057) γJun 0.0326∗∗∗(0.0022)

γJul 3.2336∗∗∗(0.1538) γJul 2.8908∗∗∗(0.1377) γJul 0.2633∗∗∗(0.0114) γJul 0.0868∗∗∗(0.0045)

γAug 1.3050∗∗∗(0.0493) γAug 1.0514∗∗∗(0.0383) γAug 0.1137∗∗∗(0.0035) γAug 0.0378∗∗∗(0.0016)

γSep 1.2205∗∗∗(0.1380) γSep 0.9919∗∗∗(0.1059) γSep 0.1131∗∗∗(0.0113) γSep 0.0372∗∗∗(0.0038)

γOct −0.2428∗∗∗(0.0483) γOct −0.2224∗∗∗(0.0382) γOct −0.0191∗∗∗(0.0044) γOct −0.0067∗∗∗(0.0015)

γNov −0.6171∗∗∗(0.0494) γNov −0.5120∗∗∗(0.0387) γNov −0.0562∗∗∗(0.0041) γNov −0.0182∗∗∗(0.0015)

γDec 4.0804∗∗∗(0.1674) γDec 3.4212∗∗∗(0.1369) γDec 0.3637∗∗∗(0.0108) γDec 0.1215∗∗∗(0.0044)

ω −0.9301∗∗∗(0.0484) ω −1.0078∗∗∗(0.0495) ω −0.8338∗∗∗(0.0438) ω −0.6769∗∗∗(0.0368)

β 0.7976∗∗∗(0.0102) β 0.7800∗∗∗(0.0105) β 0.8281∗∗∗(0.0089) β 0.8273∗∗∗(0.0092)

α 0.2004∗∗∗(0.0064) α 0.2229∗∗∗(0.0068) α 0.1298∗∗∗(0.0043) α 0.1385∗∗∗(0.0046)

λ0 −2.9936∗∗∗(0.8533) λ0 −2.9098∗∗∗(0.8859) λ0 −3.4120∗∗∗(0.5187) λ0 −2.4672∗∗∗(0.5576)

ν 1.8338∗∗∗(0.0368) τ 0.0387∗∗∗(0.0084) ξ 0.3544∗∗∗(0.0370) ν 1.0697∗∗∗(0.0349)

ν 1.4936∗∗∗(0.0451) ζ 0.2505∗∗∗(0.0404) η 0.0559∗∗∗(0.0125)

η 0.8207∗∗∗(0.0117)

Cλ 0.3642 Cλ 0.3318 Cλ 0.4791 Cλ 0.4674

LL 3.1134 LL 3.1211 LL 3.0922 LL 3.0925

AIC −6.2209 AIC −6.2356 AIC −6.1783 AIC −6.1788

BIC −6.2011 BIC −6.2137 BIC −6.1574 BIC −6.1580

HQC −6.2140 HQC −6.2280 HQC −6.1710 HQC −6.1716

LR 0.0077∗∗∗(0.0021) LR NA 0.0288∗∗∗(0.0067) LR 0.0285∗∗∗(0.0060)

Dynamic Conditional Score (DCS); Exponential Generalized Beta distribution of the second kind (EGB2); Normal-Inverse Gaussian

distribution (NIG); mean Log-Likelihood (LL); mean Akaike Information Criterion (AIC); mean Bayesian Information Criterion

(BIC); mean Hannan-Quinn Criterion (HQC); Likelihood-Ratio (LR); Not Available (NA). For EGARCH, |β| < 1 and Cλ < 1

are required for the consistency and asymptotic normality of the ML estimates. Bold numbers indicate a superior statistical

performance. The LR test is always with respect to the best performing Skew-Gen-t-DCS model. For LR, we estimate the linear

regression dt = c+ εt by using OLS-HAC, where dt is the difference between the two log-density functions for day t. Standard errors

are reported in parentheses. ∗ and ∗∗∗ indicate significance at the 10% and 1% levels, respectively.
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Table 3. Total exports from Guatemala and total imports to Guatemala

Year Regime Exports Exports % Exports mean % Imports Imports % Imports mean % Mean pt

1993 1,249,135.00 1,825,336.80 5.6354

1994 R1 1,719,461.80 37.7% 2,416,061.50 32.4% 5.7595

1995 R1 2,314,620.36 34.6% 2,855,612.18 18.2% 5.8106

1996 R1 2,356,943.45 1.8% 2,581,500.20 −9.6% 6.0912

1997 R1 3,147,110.12 33.5% 3,551,071.23 37.6% 6.0637

1998 R1 3,502,412.56 11.3% 4,288,290.71 20.8% 6.3944

1999 R1 2,663,945.10 −23.9% 3,361,987.53 −21.6% 7.3853

2000 R1 2,954,127.01 10.9% R1: 15.1% 3,406,576.45 1.3% R1: 11.3% 7.7632

2001 R2 2,496,071.04 −15.5% 3,595,573.30 5.5% 7.8586

2002 R2 2,218,061.44 −11.1% 3,845,055.97 6.9% 7.8216

2003 R2 2,661,740.70 20.0% 4,305,029.40 12.0% 7.9408

2004 R2 3,074,419.20 15.5% 4,588,573.70 6.6% 7.9481

2005 R2 3,644,831.80 18.6% 6,010,208.40 31.0% 7.6338

2006 R2 3,813,656.50 4.6% 7,279,563.30 21.1% 7.6024

2007 R2 4,219,396.20 10.6% 9,363,544.70 28.6% 7.6736

2008 R2 5,034,553.30 19.3% R2: 7.8% 11,695,311.00 24.9% R2: 17.1% 7.5584

2009 R3 4,795,305.10 −4.8% 9,362,202.80 −19.9% 8.1640

2010 R3 5,490,744.44 14.5% 11,169,889.52 19.3% 8.0556

2011 R3 6,576,115.10 19.8% 13,451,267.10 20.4% 7.7832

2012 R3 6,561,021.10 −0.2% 13,767,708.70 2.4% 7.8311

2013 R3 6,464,898.00 −1.5% 13,791,808.10 0.2% 7.8565

2014 R3 6,640,461.10 2.7% 14,239,560.90 3.2% 7.7309

2015 R3 6,409,639.40 −3.5% 14,058,324.00 −1.3% 7.6542

2016 R3 6,421,918.00 0.2% R3: 3.4% 13,924,693.80 −1.0% R3: 2.9% 7.5985

Total exports and total imports are measured in thousands of USD. Source of data: Bank of Guatemala,

http://www.banguat.gob.gt/inc/ver.asp?id=/estaeco/bc/hist/bc11.htm&e=132516. Accessed 29 July 2017.

18



Table 4. Exports of the main agricultural products of Guatemala

Year Total exports Coffee Sugar Banana Cardamom Other products CSBC (%) Other (%)

1994 1,502.60 318.3 161.5 113.9 42.3 866.6 42.33% 57.67%

1995 1,935.50 539.3 238.2 138.6 40.7 978.7 49.43% 50.57%

1996 2,030.70 472.4 202.1 155.2 39.4 1,161.60 42.80% 57.20%

1997 2,344.10 589.5 255.4 151.1 38 1,310.10 44.11% 55.89%

1998 2,581.70 586.6 316.7 191.4 36.7 1,450.30 43.82% 56.18%

1999 2,460.40 562.6 195.2 135.4 56.5 1,510.70 38.60% 61.40%

2000 2,699.00 575 190.8 167.5 79.4 1,686.30 37.52% 62.48%

2001 2,411.70 306.5 212.6 185 96.1 1,611.50 33.18% 66.82%

2002 4,162.10 261.8 227 216.3 93.3 3,363.70 19.18% 80.82%

2003 4,459.40 299.4 212.3 210 78.9 3,658.80 17.95% 82.05%

2004 5,033.60 328 188 229.7 73.8 4,214.10 16.28% 83.72%

2005 5,380.90 464.1 236.6 238.1 70.4 4,371.70 18.76% 81.24%

2006 6,012.80 464 298.6 216.8 83.4 4,950.00 17.68% 82.32%

2007 6,897.70 577.3 358.1 300.2 137.1 5,525.00 19.90% 80.10%

2008 7,737.40 646.2 378.1 317.1 208 6,188.00 20.02% 79.98%

2009 7,213.70 582.3 507.7 414.8 304.1 5,404.80 25.08% 74.92%

2010 8,462.50 713.9 726.7 353.3 308.1 6,360.50 24.84% 75.16%

2011 10,400.90 1,174.20 648.8 475.3 296.9 7,805.70 24.95% 75.05%

2012 9,978.70 958.1 803 499.8 250.3 7,467.50 25.17% 74.83%

2013 10,024.80 714.5 941.9 594.7 215.6 7,558.10 24.61% 75.39%

2014 10,803.50 668.2 951.7 651.8 239.8 8,292.00 23.25% 76.75%

2015 10,674.80 663 850.8 715.1 243 8,202.90 23.16% 76.84%

2016 10,449.40 649.1 816.7 702.6 229 8,052.00 22.94% 77.06%

Coffee, Sugar, Banana and Cardamom (CSBC); exports are measured in millions of USD. Source of data: Bank of Guatemala,

http://www.banguat.gob.gt/inc/ver.asp?id=/pim/expfob&e=133863. Accessed 11 August 2017.
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Fig. 1 GTQ/USD level pt and GTQ/USD log-return ln(pt/pt−1)

Fig. 1(a) pt from 6 Nov 1989 to 31 Dec 1993 Fig. 1(b) ln(pt/pt−1) from 6 Nov 1989 to 31 Dec 1993

Fig. 1(c) pt from 4 Jan 1994 to 30 Jun 2017 Fig. 1(d) ln(pt/pt−1) from 4 Jan 1994 to 30 Jun 2017
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Fig. 2 GTQ/USD stochastic annual seasonality component st for period 4 January 1994 to 30 June 2017

Fig. 2(a) Annual seasonality st for t-DCS Fig. 2(b) Annual seasonality st for Skew-Gen-t-DCS

Fig. 2(c) Annual seasonality st for EGB2-DCS Fig. 2(d) Annual seasonality st for NIG-DCS
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Fig. 3 Relative importance of specific foreign currency movements

Notes: R1 is 1994 to 2000 (solid thin); R2 is 2001 to 2008 (dashed thin); R3 is 2009 to 2016 (solid thick).

Fig. 3(a) Total exports from Guatemala Fig. 3(b) Total imports to Guatemala

Fig. 3(c) Receipt of loans to Guatemala Fig. 3(d) Payment of loans from Guatemala

Fig. 3(e) Remittances to Guatemala
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Fig. 4 Score functions of t-DCS, Skew-Gen-t-DCS, EGB2-DCS and NIG-DCS; estimated for the GTQ/USD time series

Notes: Score functions are presented as a function of the standardized error term εt.

Fig. 4(a) uµ,t for t-DCS (thin) and Skew-Gen-t-DCS (thick) Fig. 4(b) uµ,t for EGB2-DCS (thin) and NIG-DCS (thick)

Fig. 4(c) uλ,t for t-DCS (thin) and Skew-Gen-t-DCS (thick) Fig. 4(d) uλ,t for EGB2-DCS (thin) and NIG-DCS (thick)
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