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ABSTRACT Recently, the use of dynamic conditional score (DCS) time series models are suggested in the body of literature on time 

series econometrics. DCS models are robust to extreme observations because those observations are discounted by the score function 

that updates each dynamic equation. Examples of the DCS models are the quasi-autoregressive (QAR) model and the Beta-t-EGARCH 

(exponential generalized autoregressive conditional heteroscedasticity) model, which measure the dynamics of location and scale, 

respectively, of the dependent variable. Both QAR and Beta-t-EGARCH discount extreme observations according to a smooth form of 

trimming. Classical dynamic location and scale models (for example, the AR and the GARCH models) are sensitive to extreme 

observations. Thus, the AR and the GARCH models may provide imprecise estimates of location and scale dynamics. In the application 

presented in this paper, we use data from the Shanghai Stock Exchange A-Share Index and the Shenzhen Stock Exchange A-Share Index 

for the period of 5th January 1998 to 29th December 2017. For the corresponding stock index return time series, a relatively high number 

of extreme values are observed during the sample period. We find that the statistical performance of QAR plus Beta-t-EGARCH is 

superior to that of AR plus t-GARCH, due to the robustness of QAR plus Beta-t-EGARCH to extreme unexpected returns. 
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1. Introduction 

 

Creal, Koopman and Lucas (2013) and Harvey (2013) introduce a recent class of score-driven time series models, 

which are named as the generalized autoregressive score (GAS) models and the dynamic conditional score (DCS) 

models, respectively (we use the DCS notation in this paper). DCS models are characterized by the fact that every 

dynamic equation that drives a time-varying parameter is updated by the conditional score of the log-likelihood 

(LL) function with respect to the same time-varying parameter (hereinafter, we name the conditional score as the 

score function).  

 

DCS models are observation-driven time series models. Classical observation-driven time series models from 

the body of literature are special cases of the DCS models. For example, the ARMA (autoregressive moving 

average) model (Box and Jenkins, 1970) is a classical observation-driven model of location, which is a special 

case of the QAR (quasi-AR) model (Harvey, 2013). Another classical observation-driven model is the GARCH 

(generalized autoregressive conditional heteroscedasticity) model (Engle, 1982; Bollerslev, 1986; Taylor, 1986), 

which is a special case of the Beta-t-GARCH model (Harvey and Chakravarty, 2008). From the literature on DCS 

models, for example, the following works compare the statistical performances of classical and DCS time series 

models: Blazsek and Villatoro (2015); Blazsek, Chavez and Mendez (2016); Blazsek and Mendoza (2016); Ayala, 

Blazsek and Escribano (2017); Blazsek, Escribano and Licht (2017, 2018); Blazsek and Monteros (2017); 

Blazsek, Carrizo, Eskildsen and Gonzalez (2018); Blazsek and Hernandez (2018). 

 

DCS models absorb the new information in a different way to the classical time series models. For example, 

for the classical ARMA and GARCH models, the new information is transformed according to linear and 

quadratic transformations, respectively. Those models do not discount the effects of extreme values in the noise, 

hence, they are not robust to extreme observations. It is noteworthy that GARCH actually accentuates the effects 

of extreme observations due to the quadratic transformation, which may lead to imprecise forecasts of conditional 

volatility (Blazsek, Carrizo, Eskildsen and Gonzalez, 2018). On the other hand, DCS models are robust to extreme 

observations, because those models discount the impact of the new information on location and scale by using 

the non-linear score function. For the QAR and Beta-t-EGARCH (exponential GARCH) models that are used in 

this paper, discounting of extreme observations is performed according to a smooth form of trimming. This is due 

to the properties of the Student's t distribution that is used as an error term in those models. Alternative examples 

of the error term from the body of literature on DCS models are the exponential generalized beta distribution of 

the second kind (EGB2) (Caivano and Harvey, 2014; Caivano, Harvey and Luati, 2016; Ayala, Blazsek and 

Escribano, 2017; Blazsek and Hernandez, 2018) and the normal-inverse Gaussian (NIG) distribution (Ayala, 

Blazsek and Escribano, 2017). The EGB2 and NIG distributions perform a smooth form of Winsorizing for the 

location equation (i.e. those models discount the extreme values less than DCS models with the Student's t 

distribution). 

 

It is argued in the literature (Hussain, 2016; Carpenter, Lu and Whitelaw, 2018) that Chinese stock exchanges 

are more volatile than the United States (US) or European stock markets. This implies a relatively high number 

of extreme return observations for the Chinese stock market. In this paper, we apply a DCS model to analyze 

daily returns from the following two stock market indices: (i) Shanghai Stock Exchange A-Share Index; (ii) 

Shenzhen Stock Exchange A-Share Index. We compare the statistical performances of the AR plus t-GARCH 

(Bollerslev, 1987) and QAR plus Beta-t-EGARCH models. The error term in both models is the Student's t 

distribution, and the main difference between those models is with respect to how the new information is 

transformed in the dynamic equations. We find that QAR plus Beta-t-EGARCH is superior to AR plus t-GARCH, 

which is related to the fact that QAR plus Beta-t-EGARCH is robust to extreme values in the noise. 

 

The remainder of this paper is organized as follows. Section 2 presents the stock market in China. Section 3 

reviews the econometric models. Section 4 presents the statistical inferences. Section 5 describes the dataset. 

Section 6 summarizes the empirical results. Section 7 concludes. 
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2. The Stock market in China 

 

The stock market in China has several special characteristics that make it a complex market. Since 1992, the 

shares traded on the Chinese stock market have been segmented into three categories according to stock exchange, 

listing currency and investment restrictions, as follows: (i) A-shares are traded on the Shanghai and Shenzhen 

Stock Exchanges in renminbi (RMB). Foreign investors have been trading those shares since 2002, but with 

several restrictions. (ii) B-shares are traded on the Shanghai Stock Exchange and on the Shenzhen Stock Exchange 

in US dollar (USD) and Hong Kong dollar (HKD), respectively. Those shares are available to foreign investors. 

(iii) H-shares are traded on the Hong Kong Stock Exchange in HKD, and those shares are the main investment 

channel for foreign investors. 

 

In addition to the limitations of the share classification system, the access to the stock market of China is also 

restricted by the official prohibition of stock purchases that are financed with bank loans and also by the official 

prohibition of share purchases by financial institutions (including insurance companies, pension funds and listed 

companies) (Marszk, 2014). State-owned entities are not allowed to trade on the Shanghai and Shenzhen Stock 

Exchanges. A typical listed firm in China has two types of shares: The first type of shares are issued to state-

owned entities; those shares are not traded in any stock exchange (Wong, 2006). The second type of shares are 

issued to private individual investors; those shares can be traded freely in a stock exchange (Wong, 2006). 

 

The high volatility in the Chinese stock markets can be explained, in part, by way of the following reasons:  

Firstly, in accordance with the results of a study by Foucault, Sraer and Thesmar (2011), retail trading activity 

has a positive (increasing) effect on the volatility of stock returns. Xinhua (2015) reports that, according to the 

research report of China International Capital Corporation (see Carpenter, Lu and Whitelaw, 2018), by mid-2015, 

the free-float market capitalization in the domestic A-Share market reached 4.76 trillion USD and 80% of that 

figure was held by retail investors. The China Securities Regulatory Commission (CSRC) reports that individual 

investors account for 80% or more of total trading volume on the Chinese stock markets (see Carpenter, Lu and 

Whitelaw, 2018). Thus, in contrast with the US or European equity markets, Chinese equity ownership and trading 

on the stock market are driven by individual investors and not by institutional investors. All of these facts have a 

positive (increasing) effect on the volatility of stock returns. Secondly, the Financial Times (2015a) reports that 

both the market capitalization and the number of retail investors have increased their presence heavily on the 

Chinese equity markets since 2008. This implies that many of the individual investors in China have no direct 

memory of the bubble and crash of the Chinese stock market in 2007 and 2008 and of the US stock market crisis 

in 2008. These individual investors are more eager to take more risk than institutional and more experienced 

investors. They invest in high volatility stocks, where some of these individual investors use margins to finance 

stock market transactions, and they tend to buy when the market goes up and sell when the market goes down. 

Due to the large trading volume, the trades undertaken by these individual investors significantly increase the 

volatility of stock returns (Financial Times, 2015b; Macquire Research, 2015). 

 

The high volatility exhibited by the Chinese stock markets creates a significant number of extreme log-return 

observations on the Shanghai Stock Exchange A-Share Index and the Shenzhen Stock Exchange A-Share Index. 

 

3. Econometric models 

 

We model the daily log-return on the Shanghai Stock Exchange A-Share Index and the Shenzhen Stock Exchange 

A-Share Index. The daily log-return on these indices is �� = ln (��/��
�) for 
 = 1, … , �, where �� is the daily 

closing value of each index (we use pre-sample data for ��). Firstly, the AR(�) plus 
-GARCH model is 

 

�� = �� + �� = �� + ��
�/���                  (1) 
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where the error term is ��~
(�) independent and identically distributed (i.i.d.) with the Student's t distribution (� 

denotes the degrees of freedom parameter); �� is the time-varying conditional location parameter of �� that is the 

conditional expected return in our application; ��  denotes the unexpected return; ��
�/�

 is the time-varying 

conditional scale parameter of �� driving the conditional volatility of ��. This conditional volatility is given by 

 

�� = ��� × �
�
��

�/�
                   (2) 

 

The conditional location of �� is specified according to the following AR(�) model: 

 

�� =  + ∑ "#��
#
$
#%� =  + ∑ "#(��
# + ��
#

�/� ��
#)$
#%�               (3) 

 

where   is the constant parameter and "# with & = 1, … , � are the dynamic parameters of the AR(�) model. The 

square of the conditional scale of �� is specified according to the t-GARCH(1,1) model with leverage effects 

(Glosten,  Jagannathan and Runkle, 1993), as follows: 

 

�� = ' + () + )∗+(��
� < 0).��
�
� + /��
� = ' + {() + )∗+(��
� < 0).��
�

� + /}��
�                 (4) 

 

where )∗ measures leverage effects, and +(∙) is the indicator function that takes the value one if the argument is 

true and zero otherwise; ��  is initialized by using pre-sample data from ��  and ��  is initialized by using the 

parameter ��. For the AR(�) model, the conditional location is updated by a linear transformation of the new 

information represented by ��  (Equation 3). For the t-GARCH model, the conditional scale is updated by a 

quadratic transformation of the new information that is represented by �� (Equation 4). Thus, the new information 

that arrives to the market is not discounted in these models (as aforementioned, the updating term of the t-GARCH 

model accentuates the impact of the new information). 

 

Secondly, the t-QAR(�) plus Beta-t-EGARCH model is given by 

 

�� = �� + �� = �� + exp(��)��                 (5) 

 

where ��~
(�) denotes the i.i.d. error term. The interpretations of ��  and ��  are the same as for the AR plus 

GARCH model; exp(��) denotes the dynamic scale parameter, which drives the conditional volatility of ��. This 

conditional volatility is given by 

 

�� = exp(��) � �
�
��

�/�
                  (6) 

 

The conditional location of �� is given by the following QAR(�) model: 

 

�� =  + 6∑ "#��
#
$
#%� 7 + 89:,�
�                 (7) 

 

where 9:,� is proportional to the score function with respect to �� (Harvey, 2013) and 8 is the scaling parameter 

of the score function, which is formulated as: 

 

9:,� = �exp(��)��/(� + ���.                  (8) 

 

The log of the conditional scale of �� is the Beta-t-EGARCH model with leverage effects (Harvey, 2013): 

 

�� = ' + )9;,�
� + )∗sgn(−��
�)69;,�
� + 17 + /��
�              (9) 
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where sgn(∙) is the signum function; 9;,� is the score function with respect to ��, which is formulated as: 

 

9;,� = (� + 1)���/(� + ���. − 1               (10) 

 

�� is initialized by using pre-sample data for �� and �� is initialized by using the parameter ��. An advantage of 

the use of the QAR(�) plus Beta-t-EGARCH(1,1) model is that the updating terms 9:,� and 9;,� discount the 

impact of the new information �� on location and scale, respectively. 

 

4. Statistical inference 

 

Both models are estimated by using the maximum likelihood (ML) method. The ML estimate of parameters is 

given by: 

 

?@AB = max
E

LL(��, … , �G; ?) = max
E

∑ lnI(��|��, … , ��
�; ?)G
�%�           (11) 

 

where ? is the vector of time-constant parameters; LL is the log-likelihood and lnI(∙) denotes the log of the 

conditional density function of the dependent variable. We obtain the ML estimates by numerical maximization 

at interior points of the parameter space. We use the gradient tolerance criterion of 10
K  for the numerical 

maximization. For several parameters, their transformed values are estimated. We compute the standard errors of 

those parameters by using the delta method (Davidson and MacKinnon, 2003). 

 

5. Data 

 

We use data from the Shanghai A-Share Index (ticker: SHASHR Index) and from the Shenzhen A-Share Index 

(ticker: SZASHR Index) for the period of 5th January 1998 to 29th December 2017 (source of data: Bloomberg). 

Both indices are market capitalization weighted, tracking the daily price performance of all A-shares listed on the 

Shanghai Stock Exchange and the Shenzhen Stock Exchange, respectively. We use the log-return time series 

�� = ln (��/��
�) for 
 = 1, … �. We present the descriptive statistics of �� for both indices in Table 1. We also 

present the evolution of level and log-return variables for the Shanghai Stock Exchange A-Share Index and the 

Shenzhen Stock Exchange A-Share Index in Figure 1. 

 

 
Table 1. Descriptive statistics 

 

  SHASHR Index SZASHR Index 

Start date 5th January 1998 5th January 1998 

End date 29th December 2017 29th December 2017 

Sample size (�) 4,837 4,837 

Minimum -0.0926 -0.0893 

Maximum 0.0940 0.0924 

Mean 0.0002 0.0003 

Median 0.0006 0.0013 

Standard deviation 0.0159 0.0176 

Skewness -0.3209 -0.5006 

Excess kurtosis 4.8157 3.4555 
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Figure 1. Evolution of SHASHR Index and SZASHR Index for the period 5th January 1998 to 29th December 2017 

 

6. Estimation results 

 

We present the parameter estimates, the ML conditions and the statistical performances of both dynamic models 

in Tables 2 and 3 for SHASHR Index and SZASHR Index, respectively. For both models, we present the evolution 

of the conditional volatility �� in Figure 2.  

 

As can be seen in Tables 2 and 3, the Ljung-Box (1978) (LB) test for 5 lags suggests that the residuals support 

the specifications for both models. The AR(10) and QAR(10) lag order selection is obtained by using the LB test 

(for lower lag orders of AR and QAR, the residuals are not independent according to the LB test).  

 

The statistical performance of both models is evaluated by using the following likelihood-based performance 

criteria: (i) LL, (ii) Akaike Information Criterion (AIC), (iii) Bayesian Information Criterion (BIC) and (iv) 

Hannan-Quinn Criterion (HQC) (Davidson and MacKinnon, 2003). We present these metrics in Tables 2 and 3. 

All likelihood-based metrics suggest that QAR plus Beta-t-EGARCH is superior to AR plus t-GARCH. We 

conclude that the QAR plus Beta-t-EGARCH model improves the AR plus t-GARCH model for the estimation 

of the expected return and volatility of both the Shanghai Stock Exchange A-share Index and the Shenzhen Stock 

Exchange A-share Index. 

 

For both the AR plus t-GARCH and QAR plus Beta-t-EGARCH models, in Figure 3 we present the treatment 

of extreme observations for location and scale that is undertaken by the updating terms of the dynamic equations. 

In Figure 3, we present the updating terms of location as a function of the noise term �� for AR(10) and QAR(10). 

For the AR(10) model, the new information is transformed according to a linear function. Hence, new information 

is not discounted by the AR model. On the other hand, for the QAR(10) model, the new information is discounted 
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according to the non-linear score function. In Figure 3, we also present the updating terms of log-scale as a 

function of the noise term �� for t-GARCH(1,1) and Beta-t-EGARCH(1,1). For the t-GARCH(1,1) model, the 

new information is transformed according to a quadratic function. Hence, the new information is not discounted 

by the t-GARCH(1,1) model. On the other hand, for the Beta-t-EGARCH(1,1) model, the new information is 

discounted according to the non-linear score function. 

 
Table 2. Parameter estimates and model diagnostics, SHASHR Index 

 

  AR plus t-GARCH QAR plus Beta-t-EGARCH 

  0.0003 *  (0.0002)  0.0000   (0.0000)  

"� 0.0217   (0.0135)  0.1286   (0.2276)  

"� -0.0020   (0.0146)  1.4266 ***  (0.1417)  

"L 0.0505 ***  (0.0144)  -0.0705   (0.3933)  

"M 0.0124   (0.0140)  -1.0763 ***  (0.1987)  

"K 0.0008   (0.0142)  -0.5409 *  (0.2868)  

"N -0.0360 ***  (0.0139)  1.1171 ***  (0.2573)  

"O 0.0179   (0.0138)  0.8931 ***  (0.2731)  

"P 0.0178   (0.0139)  -0.8134 **  (0.3862)  

"Q 0.0223 *  (0.0134)  -0.2712   (0.1796)  

"�� 0.0307 **  (0.0143)  0.1939   (0.2186)  

8 NA     0.0414 ***  (0.0098)  

' 0.0000 ***  (0.0000)  -0.0565 ***  (0.0150)  

) 0.0339 ***  (0.0052)  0.0529 ***  (0.0052)  

)∗ 0.0252 ***  (0.0096)  0.0120 ***  (0.0035)  

/ 0.9173 ***  (0.0104)  0.9877 ***  (0.0033)  

�� 0.0002   (0.0001)  -4.3900 ***  (0.3664)  

� 4.6666 ***  (0.3164)  4.5876 ***  (0.3023)  

LB(5) 3.3817   (0.6414)  6.7041   (0.2436)  

LL 2.9126     2.9206     

AIC -5.8182     -5.8338     

BIC -5.7954     -5.8096     

HQC -5.8102         -5.8253         

 
Notes: Standard deviation (SD); not available (NA); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information 

criterion (BIC), Hannan-Quinn criterion (HQC). Bold numbers indicate superior model performance. For the parameter estimates, 

standard errors are reported in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
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Table 3. Parameter estimates and model diagnostics, SZASHR Index 

 

  AR plus t-GARCH QAR plus Beta-t-EGARCH 

  0.0005 ***  (0.0002)  0.0000   (0.0000)  

"� 0.0568 ***  (0.0147)  -0.2925 ***  (0.1102)  

"� -0.0175   (0.0153)  0.6336 ***  (0.1181)  

"L 0.0654 ***  (0.0151)  0.5879 ***  (0.0593)  

"M 0.0100   (0.0150)  0.0765   (0.1209)  

"K 0.0026   (0.0143)  -0.6060 ***  (0.1376)  

"N -0.0224   (0.0141)  -0.2393 **  (0.0988)  

"O 0.0311 **  (0.0141)  0.2930 ***  (0.0889)  

"P 0.0280 *  (0.0147)  0.7854 ***  (0.1078)  

"Q 0.0256 *  (0.0139)  0.2541 **  (0.1285)  

"�� 0.0281 **  (0.0141)  -0.5207 ***  (0.1088)  

8 NA     0.0918 ***  (0.0148)  

' 0.0000 ***  (0.0000)  -0.0768 ***  (0.0184)  

) 0.0360 ***  (0.0070)  0.0548 ***  (0.0052)  

)∗ 0.0387 ***  (0.0104)  0.0174 ***  (0.0034)  

/ 0.9019 ***  (0.0119)  0.9829 ***  (0.0042)  

�� 0.0002   (0.0002)  -4.2312 ***  (0.4216)  

� 5.4742 ***  (0.4291)  5.1447 ***  (0.3673)  

LB(5) 1.1739   (0.9474)  3.1622   (0.6750)  

LL 2.7786     2.7879     

AIC -5.5501     -5.5684     

BIC -5.5273     -5.5442     

HQC -5.5421         -5.5599         

 
Notes: Standard deviation (SD); not available (NA); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information 

criterion (BIC), Hannan-Quinn criterion (HQC). Bold numbers indicate superior model performance. For the parameter estimates, 

standard errors are reported in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
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Figure 2. Evolution of annualized volatility for the period of 5th January 1998 to 29th December 2017 
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Figure 3. Score functions for location RS,T and scale RU,T 

 

7. Conclusions 

 

In this work, we have presented an application of the DCS models for the Chinese stock market. DCS models are 

generalizations of classical time series models. Therefore, in many cases, DCS models provide a better fit to time 

series data than the classical time series models. The main difference between DCS and classical models is that 

DCS models are robust to extreme observations, while the same conditions may not be satisfied for classical time 

series models that contain the same extreme observations. We have compared the statistical performance of the 

QAR plus Beta-t-EGARCH model with the AR plus t-GARCH model, in an application to data from the Shanghai 

Stock Exchange A-Share Index and the Shenzhen Stock Exchange A-Share Index. We have established that the 

statistical performance of the QAR(10) plus Beta-t-EGARCH(1,1) model is superior to that of the AR(10) plus t-

GARCH(1,1) model. This is, in large part, due to the fact that DCS models are robust to extreme observations in 

the noise. 
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