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Abstract: We provide a review of the recent class of dynamic conditional score (DCS) time series models. For a DCS model, each 

dynamic equation that drives a time-varying parameter is updated by the conditional score of the log-likelihood with respect to the same 

time-varying parameter. DCS models can be related to the classical observation-driven and parameter-driven time series models from 

the body of econometric literature. We explain the main differences between the classical and DCS time series models, by comparing 

two examples, respectively, the Gaussian signal plus noise model and the dynamic Student’s t location model. We also present 

applications of three DCS models for financial and economic data: Firstly, we present the QAR (quasi-autoregressive) plus Beta-t-

EGARCH (exponential autoregressive conditional heteroscedasticity) model, which is a score-driven expected return plus score-driven 

volatility model. We use this model for daily return data on the DAX (Deutscher Aktienindex) equity index for the period of 5th January 

1988 to 29th December 2017. We compare the QAR plus Beta-t-EGARCH model with the classical AR plus t-GARCH model. Secondly, 

we present the score-driven local level, score-driven seasonality plus Beta-t-EGARCH model, which is used for daily AFN/USD 

(Afghan Afghani/ United States Dollar) currency exchange rate data for the period of 1st March 2007 to 7th July 2017. We compare the 

score-driven local level, score-driven seasonality plus Beta-t-EGARCH model with a classical local level, classical dynamic seasonality 

plus GARCH model. Thirdly, we present the QVAR (quasi-vector autoregressive) model, which is a score-driven multivariate dynamic 

model of location. We use this model for monthly US inflation rate and US unemployment rate data for the period of 1st January 1948 

to 1st December 2017. We compare the QVAR model with the classical VAR model. For all applications, we present the estimation 

results and the model diagnostics of DCS and classical models, which suggest that each DCS model is superior to the classical alternative. 
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1. Introduction 

 

In this article, we provide a review of a recent class of score-driven time series models, which is introduced in the 

works of Creal, Koopman and Lucas (2013) and Harvey (2013). Those authors name their score-driven models 

as generalized autoregressive score (GAS) and dynamic conditional score (DCS) models, respectively (in the 

present paper, we use the DCS notation). For a DCS model, each dynamic equation that drives a time-varying 

model parameter (e.g. mean, variance or correlation coefficient) is updated by the conditional score of the log-

likelihood (LL) (hereinafter, score function) with respect to the same time-varying parameter. DCS models can 

be related to classical ‘observation-driven and parameter-driven time series models’ (Cox, 1981) from the body 

of literature. We present those relationships in Section 2. 

In Section 3, we explain the main differences between the classical and DCS time series models, by 

comparing the ‘Gaussian signal plus noise model’ (Harvey, 1989) and the ‘dynamic Student’s t location model’ 

(Harvey, 2013). The Gaussian signal plus noise model and the dynamic Student’s t location model are simple 

examples from each class of models, respectively, which are presented here to highlight the main differences 

between the classical and DCS models. 

In Sections 4 to 6, we present applications of three DCS models for financial and economic time series 

variables. In Section 4, we present the QAR (quasi-autoregressive) (Harvey, 2013) plus Beta-t-EGARCH 

(exponential autoregressive conditional heteroscedasticity) (Harvey and Chakravarty, 2008; Harvey, 2013) 

model, which is a score-driven expected return plus score-driven volatility model. We use this model for daily 

return data on the DAX (Deutscher Aktienindex) equity index for the period of 5th January 1988 to 29th 

December 2017. We compare the QAR plus Beta-t-EGARCH model with the classical AR (Box and Jenkins, 

1976) plus t-GARCH (Engle, 1982; Bollerslev, 1986, 1987; Taylor, 1986) model. In Section 5, we present the 

score-driven local level, score-driven seasonality plus Beta-t-EGARCH model (Harvey, 2013), which is used for 

daily AFN/USD (Afghan Afghani/ United States Dollar) currency exchange rate data for the period of 1st March 

2007 to 7th July 2017. We compare the score-driven local level, score-driven seasonality plus Beta-t-EGARCH 

model with the classical local level, classical dynamic seasonality plus GARCH model. In Section 6, we present 

the QVAR (quasi-vector autoregressive) model, which is a score-driven multivariate dynamic model of location 

(Harvey, 2013; Blazsek, Escribano and Licht, 2017). We use this model for monthly US inflation rate and US 

unemployment rate data for the period of 1st January 1948 to 1st December 2017. We compare the QVAR model 

with the classical VAR model (Sims, 1980, 1986; Sims, Goldfeld and Sachs, 1982; Bernanke, 1986; Lütkepohl, 

2005). For all applications, we present the estimation results and the model diagnostics of the DCS models and 

their classical alternatives. Those results suggest that the statistical performance of each DCS model is superior 

to that of the classical model. We present conclusions in Section 7. 

 

2. Literature review 

 

In many practical applications that involve the estimation of time series models of financial or economic variables, 

model parameters are time-varying in order to provide an effective description of the data series. Cox (1981) 

classifies the time series models with time-varying parameters into two groups: observation-driven models and 

parameter-driven models.  

For observation-driven models, the time variation of parameters is achieved by formulating those parameters 

as functions of observable dependent and exogenous variables. Examples of some classical observation-driven 

models from the body of literature are the ARMA (AR moving average) model (Box and Jenkins, 1976), the VAR 

model (Sims, 1980, 1986; Sims, Goldfeld and Sachs, 1982; Bernanke, 1986), the ARCH model (Engle, 1982), 

the GARCH model (Bollersev, 1986, 1987; Taylor, 1986), the EGARCH model (Nelson, 1991), the ACD 

(autoregressive conditional duration) model (Engle and Russell, 1998) and the ACI (autoregressive conditional 

intensity) model (Russell, 2001). An advantage of the observation-driven models is that their statistical inferences 

are relatively straightforward. All models in the class of DCS models are observation-driven time series models. 

DCS models can be related to classical observation-driven time series models, since classical observation-driven 
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time series models are special cases of DCS models (e.g. ARMA, GARCH and VAR are special cases of QAR, 

Beta-t-GARCH and QVAR, respectively; Harvey, 2013). 

For parameter-driven models, the parameters are stochastic processes with an internal error source. In those 

models, an unobserved error term updates the dynamic equation of each time-varying parameter. Some examples 

of the parameter-driven models from the body of literature are: the unobserved components (UC) model (Harvey, 

1989), the stochastic volatility (SV) model (Harvey, Ruiz and Shephard, 1994; Harvey and Shephard, 1996), the 

stochastic conditional intensity (SCI) model (Bauwens and Hautsch, 2006; Koopman, Lucas and Monteiro, 2008) 

and the latent-factor count panel data model (Blazsek and Escribano, 2010, 2016). With respect to the parameter-

driven models, we also refer to the book of Durbin and Koopman (2012). The estimation of parameter-driven 

models, in general, is more demanding than that of observation-driven models. Although the estimation of the 

UC models of Harvey (1989) can be performed by using the straightforward Kalman filter technique (Kalman, 

1960) (that is also used for the estimation of the SV models in the works of Harvey, Ruiz and Shephard, 1994, 

and Harvey and Shephard, 1996), several more recent parameter-driven models are estimated by using simulation-

based methods. Those simulation-based methods include, for example, the Markov chain Monte Carlo (MCMC) 

method (see an application in Chib, Nardari and Shephard, 2002) and the efficient importance sampling (EIS) 

technique (Richard and Zhang, 2007; see applications in Bauwens and Hautsch, 2006 and Blazsek and Escribano, 

2010, 2016). Disadvantages of the simulation-based methods are that they may be time consuming, they may not 

be precise, and their asymptotic properties may be difficult to obtain. At least partly, these disadvantages 

motivated the works of Creal, Koopman and Lucas (2013) and Harvey (2013), for the introduction of the DCS 

models. DCS models can be related to parameter-driven models as follows. We obtain a DCS model from a 

parameter-driven model, by replacing the error term that updates each dynamic equation in the parameter-driven 

model by the score function (Harvey, 2013). 

An important advantage of DCS models with respect to the classical time series models, is that DCS models 

are robust to extreme observations in the noise. This is due to the fact that the score function in a DCS model 

discounts extreme observations. Classical time series models (e.g. ARMA and GARCH) are not robust to extreme 

observations. For example, ARMA and GARCH use linear and quadratic transformations of the noise term, 

respectively. Thus, neither ARMA nor GARCH discount extreme observations (in fact, GARCH accentuates 

extreme observations due to the quadratic transformation). This property of GARCH is one of the motivations for 

the work of Harvey and Chakravarty (2008) that introduces the Beta-t-EGARCH model (to the best of our 

knowledge, Beta-t-EGARCH is the first DCS model in the body of literature).  

 

3. Differences between classical and DCS time series models 

 

In the first part of this section, we present the Gaussian signal plus noise model (Harvey, 1989) that is a classical 

parameter-driven time series model. The discussion of the Gaussian signal plus noise model is motivated by the 

fact that a specific DCS model, named as the ‘dynamic Student’s t location model’ (also named as the ‘QAR 

model’) (Harvey, 2013), can be directly related to it: We obtain the dynamic Student’s t location model if we 

replace the error term of the location equation in the Gaussian signal plus noise model by the score function. Thus, 

in the second part of this section, we present the QAR model. The presentation of the Gaussian signal plus noise 

and QAR models helps to highlight the differences in model formulations and in statistical inferences. 

 
3.1. Gaussian signal plus noise model 

 

The Gaussian signal plus noise model (Harvey, 1989) is a simple time series model that decomposes the dependent 

variable �� into the local level component � + �� and the noise component ��, according to the idea of signal 

extraction (Harvey, 1989). The Gaussian signal plus noise model is given by: 

 

�� = � + �� + ��                   (1) 
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�� = ���	
 + ��                   (2) 

 

for � = 1, … , � , where each error term ��~���(0, ���)  and ��~���(0, ���)  is independent and identically 

distributed (i.i.d.), � is the constant parameter and � is the first-order dynamic parameter. The condition |�| < 1 

ensures that ��  is covariance stationary. With respect to the choice of the start value of �� , there are several 

possibilities: For example, one can use the unconditional mean �
 = �(��) = 0 or, alternatively, one can estimate 

the initial condition �
  as a parameter. Substituting Equation (2) into Equation (1), we obtain the following 

reduced-form ARMA(1,1) model: 

 

�� = �(1 − �) + ���	
 − ���	
 + (�� + ��)               (3) 

 

The Gaussian signal plus noise model is estimated by using the maximum likelihood (ML) method (Davidson 

and MacKinnon, 2003), for which the likelihood function is computed by using the Kalman filter technique 

(Kalman, 1960; Harvey, 1989). It is noteworthy that, when the data generating process (DGP) involves a heavy-

tailed distribution for ��, the Gaussian signal plus noise model will include extreme observations into the local 

level component � + ��, instead of the irregular component ��. Thus, the Gaussian signal plus noise model does 

not handle extreme observations in an appropriate way. 

 

3.2. Dynamic Student’s t location model 

 

The ‘dynamic Student’s t location model’ or ‘QAR model’ (Harvey, 2013) is in the class of DCS models. It is 

similar to the Gaussian signal plus noise model, since it also decomposes the dependent variable into the level 

and noise components, according to the signal extraction principle. The dynamic equation in the QAR(1) model 

is updated by the score function with respect to location, as follows: 

 

�� = � + �� + �� = �� + σ!�                         (4) 

 

�� = ���	
 + "#$,�	
                   (5) 

 

#$,� = %&'(
%)'(*

                    (6) 

 

where !�~�(+) is an i.i.d. error term having the Student’s t distribution (+  denotes the degrees of freedom 

parameter). As a consequence, the conditional distribution of �� is the non-standardized Student’s t distribution 

��~�[� + ��, σ, +], where � + �� is the dynamic location parameter, σ is the scale parameter and + is the degrees 

of freedom parameter. The updating variable #$,� is proportional to the conditional score with respect to ��: 

 
./01(2(|23,…,2(43)

.$(
= #$,� × %)


%&*                            (7) 

 

In Equations (4) and (5), � is the constant parameter and � is the first-order dynamic parameter, respectively. The 

condition |�| < 1 ensures that �� is covariance stationary. With respect to the choice of the start value of ��, there 

are several possibilities: For example, one can use the unconditional mean �
 = �(��) = 0; alternatively, one 

can estimate the initial condition �
 as a parameter. The QAR(1) model is estimated by using the ML method 

(Davidson and MacKinnon, 2003; Harvey, 2013). 

 

4. Dynamic models of expected return and volatility 

 

In the first application, we compare the statistical performances of the AR(1) plus t-GARCH(1,1) and the QAR(1) 

plus Beta-t-EGARCH(1,1) models. We use daily log-return �� = ln (9�/9�	
) data from the DAX equity index, 
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where 9� denotes the daily adjusted closing value of DAX. We control for possible serial correlation in the mean 

by using dynamic specifications for the expected return. We also control for possible serial correlation in the 

variance by using dynamic models of volatility. The estimation of DAX volatility is interesting for practitioners, 

for example, due to the following reasons: (i) When a financial or economic crisis impacts the markets, the 

volatility of DAX shares increases significantly. During those periods, the appropriate measurement and 

forecasting of volatility is important for financial investors and analysts. (ii) The value of financial derivatives on 

the DAX index is influenced by the volatility of the underlying DAX index. Examples of those financial 

derivatives are DAX futures and options, and exchange traded funds (ETFs) related to the DAX index.   

 

4.1. Econometric models 

 

Firstly, for the t-GARCH model, the daily return is modelled as 

 

�� = �� + �� = �� + ;�

/�!�                        (8) 

 

for � = 1, … , �, where the error term is !� ~�(+) i.i.d., having the Student’s t distribution, �� is the time-varying 

conditional location parameter (i.e. conditional expected return), �� denotes the unexpected return, and ;�

/�

 is the 

time-varying conditional scale parameter driving conditional volatility. The conditional volatility of �� is: 

 

�� = <;� × %
%	�=
/�

                   (9) 

  

The conditional location is specified according to the following AR(1) model: 

 

�� = � + ���	
                                          (10) 

 

The conditional scale is specified according to the t-GARCH(1,1) model with leverage effects (Glosten, 

Jagannathan and Runkle, 1993), as follows:  

 

;� = > + ?;�	
 + @��	
� + @∗��	
� �(��	
 < 0)             (11) 

 

where @∗ is a measure of the leverage effects, and �(∙) is the indicator function that takes the value one if the 

argument is true and zero otherwise. �� is initialized by using pre-sample data for ��, and ;� is initialized by using 

the parameter ;C. For the AR(1) model, the conditional location is updated by a linear transformation of the new 

information represented by !� . For the t-GARCH model, the conditional scale is updated by a quadratic 

transformation of the new information that is represented by !�. Thus, the new information that arrives to the 

market is not discounted in these models (in fact, as aforementioned, the updating term of the t-GARCH model 

accentuates the impact of the new information).  

Secondly, for the QAR plus Beta-t-EGARCH model, the daily return is modelled as: 

 

�� = �� + �� = �� + exp(;�)!�               (12) 

 

where !�~�(+) denotes the i.i.d. error term. The interpretation of �� and �� is the same as for the AR plus GARCH 

model. The conditional volatility of �� is given by: 

 

�� = exp(;�) < %
%	�=
/�

                (13)  

 

The conditional location is specified according to the following QAR(1) model: 
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�� = � + ���	
 + "#$,�	
                (14) 

 

where #$,� is proportional to the conditional score with respect to �� that is given by 

 

#$,� = %HIJ (K()'(
%)'(*

                 (15) 

 

The conditional scale is specified according to the Beta-t-EGARCH(1,1) model with leverage effects: 

 

;� =  > + ?;�	
 + @#K,�	
 + @∗sgn(��	
 − ��	
)(#K,�	
 + 1)           (16) 

 

where sgn(∙) is the signum function. Moreover, #K,� is the conditional score with respect to ;� that is given by 

 

#K,� = (%)
)'(*
%)'(*

− 1                 (17) 

 

�� is initialized by using pre-sample data for ��, and ;� is initialized by using the parameter ;C. An advantage of 

the use of both QAR(1) and Beta-t-EGARCH(1,1) models is that the updating terms #$,� and #K,� discount the 

impact of the new information !� on location and scale, respectively. 

 

4.2. Statistical inference 

 

We estimate both models by using the ML method. The ML estimate of parameters is given by: 

 

ΘOPQ = maxT UU(�
, … , �V; Θ) = maxT ∑ ln Y(��|�
, … , ��	
; Θ)V�Z
            (18) 

 

where UU is the log-likelihood and ln Y denotes the log conditional density function of the dependent variable. 

We obtain the ML estimates by numerical maximization at interior points of the parameter space. We use the 

gradient tolerance criterion of 10	[ for the numerical maximization. For several parameters, their transformed 

values are estimated. We compute the standard errors of those parameters by using the delta method (Davidson 

and MacKinnon, 2003). 

The asymptotic properties of ML are ensured by using the following conditions: Firstly, for the AR(1) and 

the t-GARCH(1,1) with leverage effects equations, the covariance stationarity is supported if 

 �$
 = |�| < 1                  (19) 

 

and 

 

\K
 = @ + ? + ]∗
� < 1 ,                (20) 

 

respectively. For the t-GARCH(1,1) with leverage effects equation, we also verify the condition of consistency 

and asymptotic normality of ML that is suggested in the work of Jensen and Rahbek (2004): 

 

\K� = � ^ _
<])`∗

* ='(*)_a < 1                (21) 
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If the expression within the square parentheses of the previous equation forms a covariance stationary time series, 

then the expected value can be estimated by using the sample average. We test the covariance stationarity of the 

expression within the square parentheses, by using the augmented Dickey-Fuller (1979) (ADF) unit root test. We 

find that all elements are covariance stationary (the ADF results are available from the authors upon request). 

Secondly, for the QAR(1) and Beta-t-EGARCH(1,1) equations, the covariance stationarity holds if 

 

�$
 = |�| < 1                  (22) 

 

and 

 

\K
 = |?| < 1,                  (23) 

 

respectively. For the QAR(1) and Beta-t-EGARCH(1,1) equations, we also verify two necessary conditions of 

consistency and asymptotic normality of ML that are suggested in the work of Harvey (2013): 

 

�$� = �� − 2�" %
%)c + "� %d%e)
C%*)c[%)cfg

(%)
)(%)c)(%)[)(%)h) < 1             (24) 

 

and 

 

\K� = ?� − @? i%
%)c + [@� + (@∗)�] × 
�%(%)
)(%)�)

(%)h)(%)[)(%)c) < 1,            (25) 

 

respectively. 

 

4.3. Data 

 

We use data from the DAX Equity Index for the period of 5th January 1988 to 29th December 2017. The DAX 

Index is a market capitalization weighted average of the prices of 30 large German companies that are traded on 

the Frankfurt Stock Exchange (source: Yahoo Finance, http://www.finance.yahoo.com). We use the log-return 

time series �� = ln (9�/9�	
) with � = 1, … , �, where � denotes the number of observations, and 9� denotes the 

adjusted closing value of the DAX Index for day � (for � = 1, we use pre-sample data of 9C). We present the 

descriptive statistics of �� in Table 1. We present the evolution of DAX log-returns in Figure 1(a). 

 

[APPROXIMATE LOCATION OF TABLE 1 AND FIGURE 1] 

 

4.4. Estimation results 

 

We present the parameter estimates, the ML conditions and the statistical performances of AR plus t-GARCH 

and QAR plus Beta-t-EGARCH in Table 1. We find that, for both models, the necessary conditions of the 

asymptotic properties of the ML estimator are supported (Table 1). For both models, we present the evolution of 

the conditional volatility �� in Figures 1(b) and 1(c), respectively.  

For both classical and DCS models, in Figures 2(a) and 2(b) we present the treatment of extreme observations 

for location and scale, respectively, which is undertaken by the updating terms in the dynamic equations. In Figure 

2(a), we present the updating terms of location as a function of the noise !� for AR(1) and QAR(1). For the AR(1) 

model, the new information is transformed according to a linear function. Hence, new information is not 

discounted by the AR model. On the other hand, for the QAR(1) model, the new information is discounted 

according to the non-linear score function. In Figure 2(b), we present the updating terms of log-scale as a function 

of the noise !� for t-GARCH(1,1) and Beta-t-EGARCH(1,1). For the t-GARCH(1,1) model, the new information 

is transformed according to a quadratic function. Hence, new information is not discounted by the t-GARCH(1,1) 
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model (in fact, the new information is accentuated by the GARCH model). On the other hand, for the Beta-t-

EGARCH(1,1) model, the new information is discounted according to the non-linear score function. 

The statistical performance of both models is evaluated by using the following likelihood-based performance 

criteria: (i) LL, (ii) Akaike Information Criterion (AIC), (iii) Bayesian Information Criterion (BIC) and (iv) 

Hannan-Quinn Criterion (HQC) (Davidson and MacKinnon, 2003). We present these metrics in Table 1. All 

likelihood-based metrics suggest that QAR-Beta-t-EGARCH is superior to AR-t-GARCH. We conclude that the 

QAR plus Beta-t-EGARCH model improves the AR plus GARCH model for the estimation of the expected return 

and volatility of the DAX equity index. 

 

[APPROXIMATE LOCATION OF FIGURE 2] 

 

5. Dynamic local level, dynamic seasonality and dynamic volatility models 

 

In the second application, we compare the classical local level, classical dynamic seasonality plus normal-

GARCH model and the score-driven local level, score-driven seasonality plus Beta-t-EGARCH model. We use 

data for the AFN/USD exchange rate. At least partly, this application is motivated by the fact that there is a very 

limited amount of literature on modelling the seasonality of the AFN/USD exchange rate 9�. We refer to the 

related work of Fry (1974), who analyses this pattern and attributes its causes mainly to the seasonality of 

agricultural exports from Afghanistan to abroad (with maximum exports, approximately, from September to 

November) and to the related subsequent USD inflows to Afghanistan, approximately, during December and 

January. 

 

5.1. Econometric models 

 

Firstly, for the classical local level, classical dynamic seasonality plus normal-GARCH(1,1) model, the daily 

value of the AFN/USD exchange rate is formulated as 

 

9� = �� + j� + �� = �� + j� + ;�

/�!�              (26) 

 

where !� ~�(0,1) is the i.i.d. noise term component of the exchange rate. The dynamic components are specified 

as follows. The local level component �� is  

 

�� = ��	
 + "��	
                 (27) 

 

which is updated by the first lag of the irregular component ��	
. The seasonality component j� is  

 

j� = ��kl�                  (28) 

 

where �� = d�mn0,�, … , �oHp,�gk
 is a 12 × 1  vector of monthly dummy variables, and the 12 × 1  vector of 

dynamic parameters l� is  

 

l� =  l�	
 + q���	
                 (29) 

 

where q�  is a 12 × 1 vector of dynamic parameters, for which each element of q� is parameterized as  qr� = qr if 

�r�  = 1 and qr� = −qr/(12 − 1) if �r�  = 0. In this formulation, qr�  with s = Jan, … , Dec are parameters to be 

estimated. The parameterization ensures that the seasonality component j�  is centred at zero. The scale 

component ;� is specified according to the normal-GARCH(1,1) model: 
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;� = > + ?;�	
 + @��	
�                 (30) 

 

Secondly, for the score-driven local level, score-driven seasonality plus Beta-t-EGARCH model, the daily 

value of the AFN/USD exchange rate is formulated as 

 

9� = �� + j� +  �� = �� + j� + exp(;�)!�              (31) 

 

where !�~�[exp(+) + 2] is the i.i.d. error term having the Student’s t distribution with exp(+) + 2 degrees of 

freedom. The dynamic components are specified as follows. The local level component �� is  

 

�� = ��	
 + "#$,�	
                 (32) 

 

where the updating term is proportional to the score function with respect to �� that is given by 

 

#$,� = HIJ(K()'(
'(*)HIJ(%))�                 (33) 

 

The seasonality component j� is  

 

j� = ��kl�                  (34) 

 

where �� = d�mn0,�, … , �oHp,�gk
 is a 12 × 1  vector of monthly dummy variables, and the 12 × 1  vector of 

dynamic parameters l� is 

 

l� =  l�	
 + q�#$,�	
                 (35) 

 

where q�  is a 12 × 1 vector of dynamic parameters, for which each element of q� is parameterized as  qr� = qr if 

�r�  = 1 and qr� = −qr/(12 − 1) if �r�  = 0. In this formulation, qr�  with s = Jan, … , Dec are parameters to be 

estimated. The parameterization ensures that the seasonality component j�  is centred at zero. The scale 

component ;� is specified according to the Beta-t-EGARCH model:  

 

;� =  > + ?;�	
 + @#K,�	
                (36) 

 

where the score function is given by: 

 

#K,� = [HIJ(%))c]'(*
HIJ(%))�)'(*

− 1                 (37) 

 

5.2. Statistical inference 

 

We estimate both models by using the ML method. The ML estimate of parameters is given by: 

 

ΘOPQ = maxT UU(9
, … , 9V; Θ) = maxT ∑ ln Y(9�|9
, … , 9�	
; Θ)V�Z
            (38) 

 

where UU is the log-likelihood and ln Y denotes the log conditional density function of the dependent variable. 

We obtain the ML estimates by numerical maximization at interior points of the parameter space. We use the 

gradient tolerance criterion of 10	[ for the numerical maximization. For several parameters, the transformed 

values of parameters are estimated. We compute the standard errors of those parameters by using the delta method 

(Davidson and MacKinnon, 2003). 
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The asymptotic properties of ML are ensured by the following conditions: For the normal-GARCH(1,1) 

equation, covariance stationarity is supported if 

 

\K
 = @ + ? < 1                 (39) 

 

In addition, for the normal-GARCH(1,1) equation, we also verify the condition of consistency and asymptotic 

normality of the ML estimates that is suggested in the work of Jensen and Rahbek (2004): 

 

\K� = � < _
]'(*)_= < 1                 (40) 

 

We estimate the expected value in the previous equation by using the sample average of the expression within the 

squared parentheses (we validate the use of the sample average estimator by the ADF unit root test). For the Beta-

t-EGARCH(1,1) equation, covariance stationarity is supported if 

 

\K
 = |?| < 1                       (41) 

 

In addition, for the Beta-t-EGARCH(1,1) equation, we also verify the following condition of consistency and 

asymptotic normality of the ML, which is suggested in the work of Harvey (2013): 

 

\K� = ?� − @? i[HIJ(%))�]
HIJ(%))[ + @� × 
�[HIJ(%))�][HIJ(%))c][HIJ(%))i]

[HIJ(%))w][HIJ(%))h][HIJ(%))[] < 1          (42) 

 

It is noteworthy that the local level component and the dynamic seasonality component are formulated according 

to a unit root process (i.e. a first-order dynamic models, for which the dynamic parameters are set to one). For 

those components, the asymptotic properties of the ML estimator hold, since the dynamic parameter is set to one, 

rather than estimated (Harvey, 2013). 

 

5.3. Data 

 

We use the information of the AFN/USD exchange rate for the period of 1st March 2007 to 7th July 2017 (source: 

Bloomberg). The models are estimated for the daily closing exchange rate 9�  for days � = 1, … , �, where � 

denotes the number of observations. We present the descriptive statistics of 9�  in Table 2. We present the 

evolution of the AFN/USD exchange rate in Figure 3(a). 

 

[APPROXIMATE LOCATION OF TABLE 2 AND FIGURE 3] 

 

5.4. Estimation results 

 

We present the parameter estimates, the ML conditions and the statistical performances of the classical local level, 

classical dynamic seasonality plus normal-GARCH model and the score-driven local level, score-driven 

seasonality plus Beta-t-EGARCH model in Table 2. For both models, we find that the conditions of the asymptotic 

properties of the ML estimator are supported (Table 2). For both models, we present the local level components 

of the classical and the DCS model in Figures 3(b) and 3(c), respectively. We also present the seasonality 

components of the classical and the DCS model in Figures 3(d) and 3(e), respectively.  

For both classical and DCS models, in Figures 4(a) and 4(b), we present the treatment of extreme observations 

for location and scale, respectively, which is undertaken by the updating terms in the dynamic equations. In Figure 

4(a), we present the updating terms of location as a function of the noise term !�. For the classical model, the new 

information is transformed according to a linear function. Hence, new information is not discounted by the 

classical model. On the other hand, for the DCS model, the new information is discounted according to the non-
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linear score function. In Figure 4(b), we present the updating terms of log-scale as a function of the noise !� for 

normal-GARCH(1,1) and Beta-t-EGARCH(1,1). For the normal-GARCH(1,1) model, the new information is 

transformed according to a quadratic function. Hence, new information is not discounted by the normal-

GARCH(1,1) model. On the other hand, for the Beta-t-EGARCH(1,1) model, the new information is discounted 

according to the non-linear score function. 

The statistical performance of both models is evaluated by using the following likelihood-based performance 

criteria: LL, AIC, BIC and HQC (Table 2). All likelihood-based metrics suggest that the classical local level, 

classical dynamic seasonality plus normal-GARCH model is superior to the score-driven local level, score-driven 

seasonality plus Beta-t-EGARCH model. Thus, the score-driven local level, score-driven seasonality plus Beta-

t-EGARCH model improves the classical local level, classical dynamic seasonality plus normal-GARCH model 

for the estimation of local level, seasonality and volatility of the AFN/USD exchange rate. 

 

[APPROXIMATE LOCATION OF FIGURE 4] 

 

6. Multivariate dynamic models of location 

 

In the third application, we present an application of the QVAR(1) multivariate DCS model (Harvey, 2013; 

Blazsek, Escribano and Licht, 2017). We use QVAR(1) in order to study the dynamic interaction effects between 

the US inflation and unemployment rates. We also compare the statistical performances of QVAR(1) and VAR(1) 

models. This analysis is motivated by the work of Nordhaus (1975), who proposes a macroeconomic model of 

inflation and unemployment rates related to government-policies, for which the objective of the government is to 

win the next elections. That paper presents that the objective of winning the next elections may create political 

cycles of economic recessions and economic expansions: After winning the elections, the government tends to 

establish policies that keep the inflation rate at a low level, at the expense of a high unemployment rate. 

Subsequently, during the period preceding the next elections, government policies are modified to increase the 

level of inflation and decrease the unemployment rate, hence, to increase the probability of winning the next 

elections. The governments pursue these economic policies because, on the date of the elections, the voters 

discount the costs of past economic outcomes (e.g. high unemployment rate) (see also Findley, 2015, for a related 

discussion and for an extension of the model of Nordhaus, 1975).  

 

6.1. Econometric models 

 

Firstly, the VAR(1) model for the vector of dependent variables (�
�, … , �x�)′ is given by: 

 

�� = �� + �� = �� + Ω	
!�                (43) 

 

��  is the conditional mean of ��|(�
, … , ��	
) that is specified as 

 �� = � + Φ��	
                      (44)  

 

where � is a | × 1 vector of constant parameters and Φ is a | × | matrix of dynamic parameters. �� is a | × 1 

vector of contemporaneously correlated reduced-form error terms, !�  is a | × 1 vector of contemporaneously 

uncorrelated structural-form error terms, and Ω	
  is a | × |  lower-triangular scaling matrix. The process is 

initialized by using �
 = �(��) = (�x − Φ)	
� . For this model, �(��|�
, … , ��	
) = �� . The structural-form 

linear vector moving average (VMA) representation of �� is 

 �� = ∑ Φr�}rZC + ∑ ΦrΩ	
}rZC !�	r                    (45) 
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From this representation, we obtain that the impulse response function �~�r = .2(��
.'(

 for s = 0, 1, … , ∞ is 

 

�~�r = ΦrΩ	
                            (46) 

     

Secondly, the QVAR(1) model for the vector of dependent variables (�
�, … , �x�)′ is given by: 

 

�� = � + �� + �� = � + �� + Ω	
!�               (47) 

 

where ��~�x(0, Σ, +) has a multivariate Student’s t distribution that is the multivariate i.i.d. reduced-form error 

term. Σ is positive definite and + > 2. The interpretation of all parameters and variables of QVAR(1) is the same 

as that of VAR(1). ��  is specified as 

 

�� =  Φ��	
 + Ψ#$,�	
                      (48) 

 

where #$,� is proportional to the conditional score with respect to ��. The process is initialized by setting �
 =
�(��) = 0x × 
. For this model, �(��|�
, … , ��	
) = � + ��. The log conditional density of �� is  

 

lnY(��|�
, … , ��	
) = lnΓ <%)x
� = − lnΓ <%

�= − x
� − 


� ln|Σ| − %)x
� ln <1 + �(��43�(

% =         (49) 

 

The partial derivative of the log of the conditional density with respect to �� is 

 
./01(2(|23,…,2(43)

.$(
= %)x

% Σ	
 × <1 + �(��43�(
% = �� = %)x

% Σ	
 × #$,�           (50) 

 

The second equality of the previous equation defines the score function #$,� that updates the conditional mean of 

��. The structural-form nonlinear VMA representation of �� is 

 

�� = � + �∑ ΦrΨ[(+ − 2)+]
/�Ω	
 '(434�
%	�)'(434�� '(434�

}rZC � +  < %
%	�=
/� Ω	
!�          (51) 

 

From this representation, we obtain that the impulse response function �~�r = .2(��
.'(

 is given by: 

�~�r� = < %
%	�=
/� Ω	
 for s = 0               (52) 

 

�~�r� = ΦrΨ[(+ − 2)+]
/�Ω	
��	
	r for s = 1, … , ∞            (53) 

 

�� =  
. �(

�4*��(��(
.'(

                  (54) 

 

As can be seen in the previous equations, �~�r�  is time-dependent for s = 1, … , ∞. In this paper, we use its 

unconditional mean to measure the dynamic interaction effects between inflation and unemployment: 

 

�~�r = �(�~�r�) = ΦrΨ[(+ − 2)+]
/�Ω	
�(��	
	r)                       (55) 

 

If all elements of ��	
	r form covariance stationary time series, then �(��	
	r) can be estimated by using the 

sample average (we validate the use of the sample average estimator by the ADF unit root test). 
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6.2. Statistical inference 

 

We estimate VAR(1) and QVAR(1) by using the ML method (Davidson and MacKinnon, 2003), respectively. 

For both models, the ML estimates are: 

 

ΘOPQ = maxT UU(�
, … , �V; Θ) = maxT ∑ ln Y(��|�
, … , ��	
; Θ)V�Z
            (56) 

 

where ln Y  denotes the log conditional density function of �� . We obtain the ML estimates by numerical 

maximization at interior points of the parameter space. We use the gradient tolerance criterion of 10	[ for the 

numerical maximization. For several parameters, the transformed values of parameters are estimated. We 

compute the standard errors of those parameters by using the delta method (Davidson and MacKinnon, 2003). 

For both VAR(1) and QVAR(1), the covariance stationarity of �� is ensured by the fact that the modulus of 

all eigenvalues of Φ is less than one (we denote the maximum modulus of all eigenvalues with \$). Related to 

this, we refer to the results of Lütkepohl (2005, Chapter 11) and Harvey (2013), respectively. For VAR(1), this 

condition ensures that the ML estimator is consistent and that it is asymptotically normal. For QVAR(1), we refer 

to additional conditions of consistency and asymptotic normality of the ML estimator that are demonstrated in 

the work of Blazsek, Escribano and Licht (2017). 

 

6.3. Data 

 

We use monthly data on the US inflation rate �
� and the US unemployment rate ��� for the period of 1st January 

1948 to 1st December 2017 (source: Federal Reserve Bank of St. Louis, https://www.stlouisfed.org/). The models 

are estimated for the time series �� = (�
�, ���)′ for � = 1, … , �. We present some descriptive statistics of �
� 

and ��� in Table 3. We present the evolution of �
� and ��� in Figure 5. 

 

[APPROXIMATE LOCATION OF TABLE 3 AND FIGURE 5] 

 

6.4. Estimation results 

 

We present the parameter estimates, the ML conditions and the statistical performances of the VAR(1) and 

QVAR(1) models in Table 4. For both models, we find that all conditions of covariance stationarity are supported 

(see Table 4). It is noteworthy that for QVAR(1) all conditions of consistency and asymptotic normality of the 

ML estimator (Blazsek, Escribano and Licht, 2017) are satisfied (we do not report the corresponding statistics in 

this paper, but those results are available from the authors upon request).   

For VAR(1) and QVAR(1), we present the IRFs in Figures 6 and 7, respectively. For VAR(1), the IRF shows 

non-significant dynamic effects of unemployment shocks on inflation and negative significant dynamic effects of 

inflation shocks on unemployment (Figure 6). Thus, the IRF estimates of VAR(1) do not support completely the 

theory presented in Nordhaus (1975).  On the other hand, for QVAR(1), the IRF shows significant negative 

dynamic effects of unemployment shocks on inflation and also negative dynamic effects of inflation shocks on 

unemployment (Figure 7). Thus, the IRF estimates of QVAR(1) support the theory of Nordhaus (1975), with 

respect to the negative interaction effects between the US inflation and unemployment rates. 

The statistical performance of both models is evaluated by using the following likelihood-based performance 

criteria: LL, AIC, BIC and HQC. We present these metrics in Table 4. All likelihood-based metrics suggest that 

QVAR(1) is superior to VAR(1) (Table 4). We conclude that the QVAR(1) model improves the classical VAR(1) 

model for the estimation of interaction effects for US inflation and US unemployment rates. 

 

[APPROXIMATE LOCATION OF TABLE 4 AND FIGURES 6-7] 
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7. Conclusions 

 

We have provided a review of the DCS class of time series models, which have recently appeared in the body 

literature in economics. DCS models can be directly related to several classical time series models. To highlight 

the main differences between DCS and classical models, we have compared two simple models of location: the 

Gaussian signal plus noise model (i.e. a classical time series model) and the QAR model (i.e. a DCS model). 

Perhaps, the main difference between DCS and classical models is that DCS models are robust to outliers (i.e. 

extreme values in the irregular component). One of the consequences of this robustness property is that the ML 

conditions may be satisfied for DCS models, while the same conditions may not be satisfied for classical time 

series models, due to outliers. An interesting property of DCS models is that those models are generalizations of 

classical time series models (for example, QAR and QVAR are generalizations of ARMA and VAR, respectively). 

As a consequence, in many cases, DCS models provide a better fit to time series data than classical time series 

models. We have presented this superior statistical performance in three examples that involve data from the 

following variables: (i) DAX Index; (ii) AFN/USD exchange rate; (iii) US inflation rate and US unemployment 

rate. We have found that the DCS models are superior to the classical time series models. 
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Table 1. Descriptive statistics, parameter estimates and model diagnostics 

 
Descriptive statistics t-GARCH parameters Beta-�-EGARCH parameters 

Start date 1st January 1988 �
 0.0006*** (0.0001) �
 0.0004 (0.0003) 

End date 29th December 2017 �
 -0.0103 (0.0110) �
 0.2829 (0.5625) 

Sample size 7,742 "
 NA "
 -0.0216 (0.0156) 

Minimum -0.1409 >
 0.0000*** (0.0000) >
 -0.0768*** (0.0127) 

Maximum 0.1080 @
 0.0163*** (0.0041) @
 0.0413*** (0.0033) 

Average 0.0003 @
∗ 0.0878*** (0.0110) @
∗ 0.0276*** (0.0031) 

Median 0.0003 ?
 0.9042*** (0.0089) ?
 0.9837*** (0.0027) 

SD 0.0138 ;C 0.0005** (0.0002) ;C -3.7916*** (0.2606) 

Skewness -0.2529 + 7.3074*** (0.7572) + 7.0991*** (0.6665) 

Excess kurtosis 6.2139     

Model diagnostics \$
 0.0103 \$
 0.2829 

    \$� 0.0889 

  \K
 0.9644 \K
 0.9837 

  \K� 0.9302 \K� 0.8623 

  LL 3.0615 LL 3.0646 

  AIC -6.1209 AIC -6.1269 

  BIC -6.1138 BIC -6.1189 

  HQC -6.1185 HQC -6.1241 

 
Notes: Standard deviation (SD); not available (NA); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information 

criterion (BIC), Hannan-Quinn criterion (HQC). Bold numbers indicate superior model performance. For the parameter estimates, 

standard errors are reported in parentheses. ** and *** indicate significance at the 5% and 1% levels, respectively. 
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Table 2. Descriptive statistics, parameter estimates and model diagnostics 

 
Descriptive statistics Local level-seasonal-GARCH parameters Local level-seasonal-Beta-�-EGARCH parameters 

Start date 1st March 2007 κ 0.7166*** (0.0224) κ 3.7757*** (0.1307) 

End date 7th July 2017 ν NA ν -0.6121*** (0.1482) 

Sample size 2,622 κmn0 0.0815 (0.0768) κmn0 0.2214*** (0.0442) 

Minimum 44.3400 κ�H� 0.0498** (0.0207) κ�H� 0.5541*** (0.0381) 

Maximum 69.5400 κPn� 0.0677** (0.0344) κPn� 0.2666*** (0.0333) 

Average 54.4609 κ�J� -0.0326*** (0.0048) κ�J� -0.1227*** (0.0153) 

Median 51.6350 κPn� 0.0597*** (0.0108) κPn� 0.0661** (0.0272) 

SD 7.2344 κm�0 0.0985*** (0.0280) κm�0 -0.2126*** (0.0359) 

Skewness 0.7346 κm�/ -0.1310*** (0.0080) κm�/ -0.4106*** (0.0384) 

Excess kurtosis -0.6795 κ��� 0.1347*** (0.0093) κ��� 0.0287 (0.0362) 

  κ�HJ 0.0616*** (0.0237) κ�HJ 0.0635 (0.0726) 

  κ�p� 0.0301*** (0.0031) κ�p� 0.0213 (0.0160) 

  κ��� -0.1277*** (0.0183) κ��� -0.1369* (0.0754) 

  κoHp -0.0542*** (0.0092) κoHp -0.2053*** (0.0237) 

  ω 0.0045*** (0.0002) ω -0.3988*** (0.0224) 

  β 0.6691*** (0.0088) β 0.8021*** (0.0800) 

  α 0.3481*** (0.0128) α 0.5000*** (0.0179) 

  ;C 0.0275 (0.0543) ;C -1.5310 (0.9334) 

Model diagnostics \$ 0.6691 \$ 0.8021 

  \K 0.8674 \K 0.3367 

  LL 0.2487 LL 0.5761 

  AIC 0.4844 AIC -1.1384 

  BIC -0.4463 BIC -1.0981 

  HQC -0.4706 HQC -1.1238 

 
Notes: Standard deviation (SD); not available (NA); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information 

criterion (BIC), Hannan-Quinn criterion (HQC). Bold numbers indicate superior model performance. For the parameter estimates, 

standard errors are reported in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. 
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Table 3. Descriptive statistics 

 
Descriptive statistics Inflation rate Unemployment rate 

Start date 1st February 1948 1st February 1948 

End date  1st December 2017 1st December 2017 

Sample size  839 839 

Minimum  -21.2466 2.5000 

Maximum  21.7195 10.8000 

Average  3.3706 5.7926 

Median  2.9268 5.6000 

SD  4.0137 1.6337 

Skewness  0.4275 0.6180 

Excess kurtosis  3.8362 0.1055  

 
Notes: Standard deviation (SD). 
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Table 4. Parameter estimates and model diagnostics 

 
VAR(1) parameters  QVAR(1) parameters  

�
 0.0069 (0.1152) �
 -0.0111 (0.0280) 

�� 0.0003 (0.0067) �� -0.0026 (0.0125) 

Φ
,
 -0.3282*** (0.0313) Φ
,
 0.1857*** (0.0494) 

Φ
,� 0.6678 (0.5601) Φ
,� -1.1699 (0.7653) 

Φ�,
 0.0013 (0.0020) Φ�,
 0.0049 (0.0044) 

Φ�,� 0.1218*** (0.0320) Φ�,� 0.8626*** (0.0299) 

Ω
,
	
 3.3936*** (0.0889) Ω
,
	
 2.5017*** (0.0784) 

Ω�,
	
 -0.0170** (0.0068) Ω�,
	
 -0.0078 (0.0055) 

Ω�,�	
 0.2071*** (0.0054) Ω�,�	
 0.1612*** (0.0050) 

  + 6.2942*** (0.7629) 

  q
,
 -0.8639*** (0.0630) 

  q
,� 0.2753 (0.7531) 

  q�,
 0.0011 (0.0039) 

  q�,� 0.2388*** (0.0384) 

Model diagnostics    

\$ 0.3302 \$ 0.8540 

LL -2.4852 LL -2.2472 

AIC 4.9918 AIC 4.5279 

BIC 5.0427 BIC 4.6069 

HQC 5.0113 HQC 4.5582 

 
Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC). 

Bold numbers indicate superior model performance. Standard errors are reported in parentheses. ** and *** indicate significance at the 

5% and 1% levels, respectively. 
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Figure 1. Evolution of DAX log-return, DAX volatility for t-GARCH and DAX volatility for Beta-t-EGARCH 
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Figure 1(a). DAX log-return
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Figure 1(b). t-GARCH volatility
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Figure 1(c). Beta-t-EGARCH volatility
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Figure 2. Updating terms of location and scale for AR plus GARCH and QAR plus Beta-t-EGARCH Notes: The updating terms 

for AR and t-GARCH are with solid thin lines in Figures 2(a) and 2(b), respectively. The updating terms for QAR and Beta-t-EGARCH 

are with solid thick lines in Figures 2(a) and 2(b), respectively. 
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Figure 2(a). uμ,t as a function of εt

-2

3

8

13

18

23

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2(b). uλ,t as a function of εt
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Figure 3. Evolution of AFN/USD, local level components and seasonality components 
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Figure 3(a). AFN/USD exchange rate
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Figure 3(b). Classical local level, classical dynamic seasonality plus GARCH model: local level
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Figure 3(c). Score-driven local level, score-driven seasonality plus Beta-t-EGARCH model: local level
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Figure 3(d). Classical local level, classical dynamic seasonality plus GARCH model: seasonality
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s[t]Figure 3(e). Score-driven local level, score-driven seasonality plus Beta-t-EGARCH model: seasonality
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Figure 4. Updating terms of location and scale for the classical local level, classical dynamic seasonality plus GARCH model and 

the score-driven local level, score-driven seasonality plus Beta-t-EGARCH model Notes: The updating terms for the classical model 

are with solid thin lines. The updating terms for the DCS model are with solid thick lines. 
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Figure 5. Evolution of the US inflation and unemployment rates 
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Figure 5(a). Inflation rate
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Figure 5(b) Unemployment rate
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Figure 6. IRF for the VAR(1) model Notes: We present the IRF estimate up to 20 months with the 90% confidence interval. 
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Figure 6(a). Inflation shock → inflation rate
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Figure 6(b). Unemployment shock → inflation rate
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Figure 6(c). Inflation shock → unemployment rate
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Figure 6(d). Unemployment shock → unemployment rate
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Figure 7. IRF for the QVAR(1) model Notes: We present the IRF estimate up to 20 months with the 90% confidence interval. 
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Figure 7(a). Inflation shock → inflation rate
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Figure 7(b). Unemployment shock → inflation rate
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Figure 7(d). Unemployment shock → unemployment rate


