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1. Introduction

A growing literature following the seminal works of Creal et al. (2008), Harvey and Chakravarty

(2008), Creal et al. (2013) and Harvey (2013) indicates that modelling asymmetric dependence be-

tween pairs of investment alternatives and tail-dependent distributions has increasingly becoming more

relevant considering the current financial markets’ context (Frahm et al., 2005; Bernardi and Catania,

2019). The model framework proposed by those authors is either called generalized autoregressive score

(GAS) or dynamic conditional score (DCS) (hereinafter, the present paper uses the DCS abbreviation).

In the DCS framework, the model parameters are time-varying, driven by the score of the obser-

vation density. This type of models is capable of capturing distribution asymmetries with time series

shifts/jumps/outliers detection. One of the advantages of the use of DCS models is that they provide

optimal filters according to the Kullback–Leibler divergence measure (Blasques et al., 2015). More-

over, due to its conditional score dynamics, the maximum likelihood (ML) may be straightforwardly

estimated. Further extensions to time series data idiosyncrasies such as long memory, asymmetry, and

other more complex data dynamics may be relatively easily implemented as well. The DCS models have

been applied to a wide variety of empirical studies exploring problems in finance and economics, such

as the modeling of credit default swap (CDS) spread, stock market return volatility and correlation,

credit rating/credit risk, and systemic risk/financial stability (Creal et al., 2011; Creal et al., 2013;

Harvey and Lange, 2017; Babatunde, 2019).

As the DCS models were relatively recently introduced, from a theoretical vantage point, its ML

estimation still consists of a developing and work-in-progress subject matter (Ardia et al., 2019). The

capacity of financial time series models to effectively capture the impacts derived from extreme negative

events greatly depends on the respective model framework flexibility and adaptability to asymmetric

dependent and non-linear financial returns data. The present paper compares several score-driven

Markov regime-switching (MS) volatility models and their single-regime versions, and the following

three main contributions to the existing literature are provided:

Firstly, a new Meixner (MXN) probability distribution-based DCS volatility model, named MXN-

DCS-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) is proposed.

The MXN probability distribution is introduced in the work of Schoutens (2002), in which it is applied

to pricing financial derivatives by using MXN distribution-based stochastic volatility models. Fur-

ther related works based on the MXN distribution, for example, are Grigoletto and Provasi (2008),

Madan and Yor (2008), Bozejko and Demni (2010) and Kawai (2012). However, score-driven condi-

tional volatility models for the MXN distribution have not been considered yet in the body of literature

on time series models. Therefore, in this paper, the statistical performances of MXN-DCS-EGARCH

and MS-MXN-DCS-EGARCH, both including leverage effects, are compared to the classical t-GARCH

model with leverage effects (Bollerslev, 1987; Glosten et al., 1993) and to alternative DCS-EGARCH

models with leverage effects that are found in the literature.

The aforementioned alternative score-driven models are Beta-t-EGARCH, proposed by Harvey

and Chakravarty (2008); GED-EGARCH (general error distribution EGARCH) proposed by Har-

vey (2013); Beta-Skew-Gen-t-EGARCH (skewed generalized t-distribution EGARCH, henceforth only
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Skew-Gen-t-EGARCH), proposed by Harvey and Sucarrat (2014); EGB2-EGARCH (exponential gen-

eralized beta distribution of the second kind EGARCH), proposed by Caivano and Harvey (2014); and

NIG-EGARCH (normal-inverse Gaussian distribution EGARCH), proposed by Blazsek et al. (2018).

For all alternative volatility models explored in the present paper, single-regime and MS versions are

considered, statistical performances are compared, and model diagnostics are analyzed.

Secondly, new ML conditions for the MS-DCS-EGARCH model are introduced. Those conditions

ensure the covariance stationarity of stock index log-returns, the covariance stationarity of the contri-

butions to the gradient vector of the ML estimator, the covariance stationarity of the contributions to

the information matrix of the ML estimator, and the invertibility of the score-driven MS-EGARCH

model. For the first three conditions, arguments from the works of Abramson and Cohen (2007) and

Harvey (2013) are extended. For the latter condition, the results from the work of Blasques et al.

(2018) are applied to all DCS-EGARCH models that are explored in this paper. The ML estimation

method that is used in the present paper is introduced in the work of Klaassen (2002) for the estimation

of a non-path-dependent MS-GARCH model. We apply the Klaassen’s method to the estimation of all

MS volatility models. Nevertheless, there are other non-path-dependent (e.g. Gray, 1996; Haas et al.,

2004) and path-dependent (e.g. Dueker, 1997; Bauwens et al., 2010; Henneke et al., 2011) estimation

methods in the MS-GARCH literature that may be considered as alternatives to the present paper. In

the literature on DCS models, the works of Blazsek and Ho (2017) and Blazsek et al. (2018) apply the

Klaassen’s method for MS-DCS-EGARCH models. Therefore, the present paper extends both the ML

conditions and the MS-DCS-EGARCH specifications of those papers.

Thirdly, the empirical analyses involving MS-DCS-EGARCH models are performed on a large and

international dataset of daily log-returns for 20 of the most relevant stock markets from the G20

economies, covering the maximum available historical data period for each stock market. Data from

the following countries are analyzed: Argentina, Australia, Brazil, Canada, China, France, Germany,

India, Indonesia, Italy, Japan, Mexico, Russia, Saudi Arabia, South Africa, South Korea, Spain, Turkey,

United Kingdom (UK) and United States (US). In the context of MS-DCS-EGARCH models, the works

of Blazsek and Ho (2017) and Blazsek et al. (2018) focus on US data. Nonetheless, the present paper

provides the broadest international comparison of the statistical performances and model diagnostics

of MS-DCS-EGARCH models in the existing literature on DCS models.

The main empirical results are as follows. All single-regime and MS volatility models are estimated

for all stock markets in the sample. For Argentina, Brazil, China, India, Indonesia, Saudi Arabia, South

Africa, South Korea and Turkey, the different regimes of the MS volatility models are not separated

effectively. For those cases, the statistical performance of single-regime MXN-EGARCH is compared to

single-regime alternatives. According to likelihood-based model performance metrics, MXN-EGARCH

is superior to the classical t-GARCH model for the stock markets in China, Indonesia, Saudi Arabia and

South Africa. However, according to the same metrics, Beta-t-EGARCH or Skew-Gen-t-EGARCH are

superior to MXN-EGARCH for all stock markets. The model diagnostics statistic for the single-regime

volatility models of this paper, which verifies the covariance stationarity of log-return, never suggests

rejection of the asymptotic properties of the ML estimator.
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For Australia, Canada, France, Germany, Italy, Japan, Mexico, Russia, Spain, UK and US, the

separation of regimes for MS models is effective. With the exception of Russia, the MS-DCS-EGARCH

specifications are superior to MS-t-GARCH for all stock markets. For each best-performing MS-DCS-

EGARCH specification, the smoothed probabilities of the ‘high-volatility regime’ are presented with

the estimates of the conditional volatility series. According to likelihood-based model performance

metrics, the novel MS-MXN-EGARCH specification is superior to MS-t-GARCH for the stock markets

in Australia, Canada, Italy, Japan and US. However, according to likelihood-based model performance,

the best MS-DCS-EGARCH specifications are MS-Beta-t-EGARCH, MS-Skew-Gen-t-EGARCH and

MS-NIG-EGARCH. The model diagnostics that verify the covariance stationarity of log-returns, the

covariance stationarity of the contributions to the gradient vector, the covariance stationarity of the

contributions to the information matrix, and invertibility for those MS specifications for which the

separation of regimes is effective, never suggest rejection of the asymptotic properties of ML.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 describes the dataset. Section 4 presents all MS-DCS-EGARCH specifications, including

MS-MXN-EGARCH. Section 5 presents the statistical inferences. Section 6 summarizes the empirical

results. Finally, Section 7 concludes and suggests future research opportunities.

2. Literature review

The state of the existing literature is divided into three subsections. Firstly, it is reviewed the

literature of DCS models in general. Secondly, models that combine the DCS framework with EGARCH

models are explored. Thirdly, the contributions to the literature by adding the MS structure to DCS

and DCS-EGARCH models are discussed as well.

2.1. DCS models

Time series models based on parameters that dynamically vary through time are commonly grouped

in the existing literature into two model categories, consisting of the observation-driven and the

parameter-driven models (Cox et al., 1981; Creal et al., 2013). The observation-driven models have

been developed to exploit large changes, also known as shifts or jumps, and distributional asymmetries

frequently present in financial time series, such as stock market returns. Such model category includes

the ARCH model, originally introduced by Engle (1982), and its subsequent relevant extension, the

GARCH model proposed by Bollerslev (1986), which have been widely applied to empirical studies

(e.g. Engle and Sheppard, 2001; Bauwens et al., 2006).

However, motivated by difficulties of such established models in estimating stochastic volatility by

not properly capturing conditional distribution properties of the input data as well as lack of robustness

in treating outlier effects, more recently and two and half decades after the seminal contributions of

Engle (1982) and Bollerslev (1986), a class of score-driven volatility models, named DCS or GAS, was

introduced by Harvey and Chakravarty (2008) and Creal et al. (2008), respectively.

This third and new class of score-driven models is, in fact, a modification of the GARCH model,

proposed with the purpose of capturing time large changes/shifts/jumps and mitigate negative impact

of outliers. As in the DCS model it is assumed that the innovations follow a non-normal distribution

and its second central moment is modelled through a GARCH-type equation based on the conditional
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score of the assumed distribution regarding the variance, then such a distinct approach elevates DCS

models to a distinctive model category compared to volatility models previously introduced in the

literature (Harvey, 2013; Ardia et al., 2019). Due to its peculiar framework characteristics, more

specifically by scaling the score function in an appropriate manner, the DCS models are able to capture

properties of existing observation-driven models, such as the GARCH model (Engle, 1982; Bollerslev,

1986), autoregressive conditional duration (ACD) model of Engle and Russell (1998), the autoregressive

conditional intensity (ACI) model of Russell (1999), the dynamic conditional correlation (DCC) model

of Engle (2002), the GARMA models of Benjamin et al. (2003), autoregressive conditional multinomial

(ACM) model of Russell and Engle (2005), and the dynamic copula models of Patton (2006), among

others well-known related models (Creal et al., 2013; Blasques et al., 2014).

Subsequently, the DCS model framework was further developed into a number of model extensions,

such as the observation-driven mixed measurement dynamic factor models proposed by Creal et al.

(2014), the dynamic models for location, volatility and multivariate dependence for fat-tailed densities

introduced by Creal et al. (2011), the exponential DCS proposed by Harvey and Chakravarty (2008)

and Harvey (2013), and the asymmetric exponential DCS introduced by Creal et al. (2013), among

other extensions (Harvey and Luati, 2014; Babatunde et al., 2019).

The practical usefulness of DCS models is tested and demonstrated through several studies on

different topics. For example, the DCS modelling framework is applied to market risk forecasting

(Harvey and Sucarrat, 2014), systematic risk forecasting (Oh and Patton, 2013; Cerrato et al., 2017;

Eckernkemper, 2017; Bernardi and Catania, 2019), credit risk analysis (Creal et al., 2014), dependence

modelling (Harvey and Thiele, 2016; Janus et al., 2014; Opschoor et al., 2018), spatial econometrics

(Blasques et al., 2014; Catania and Billé, 2017), CDS spread modelling (Lange et al., 2017; Oh and

Patton, 2018), high-frequency data modelling (Gorgi et al., 2018; Opschoor and Lucas, 2019), among

other empirical applications (e.g. Ardia et al., 2019; Lazar and Xue, 2019; Patton et al., 2019).

2.2. DCS-EGARCH models

The EGARCH model was introduced by Nelson (1991), being proposed to model the natural log-

arithm of the conditional variance. The original EGARCH proposition attempts to accommodate the

asymmetric relation between stock returns and volatility changes. One the main motivations behind its

proposition is to treat the stylized fact known as ‘leverage effect’ (Black, 1976; Pierre, 1998; Figlewski

and Wang, 2000).

Almost two decades after the seminal contribution of Nelson (1991) and respective model exten-

sions, a further EGARCH model improvement is introduced by Harvey and Chakravarty (2008), Creal

et al. (2008), Creal et al. (2011) and Harvey (2013), named Beta-t-EGARCH model. Such model

consists of an unrestricted version of the DCS model as in the framework introduced by Creal et al.

(2013). In the Beta-t-EGARCH, the second central moment is modelled by an equation that depends

on the conditional score of the most recent observation. A direct consequence of the application of the

conditional score in the equation of the dynamic volatility is that data points considered as outliers

under a Gaussian distribution vantage point, have a relatively lower impact than the remaining obser-

vations. Therefore, the Beta-t-EGARCH consists of a robust volatility model (Harvey and Sucarrat,
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2014). One of the additional advantages of the Beta-t-EGARCH in comparison with competing estab-

lished models is that through an exponential function, stationarity conditions as well as positive scale

may be reached in a relatively simple and straightforward manner. Moreover, it is possible to derive

volatility forecasts expressions, being their respective conditional variances properly calculated, and

simulating straightforwardly the related conditional distribution. Finally, general analytic expressions

of the serial correlation function of squared observations may be appropriately calculated as well. As a

consequence of such framework characteristics, the Beta-t-EGARCH frequently demonstrates a supe-

rior performance compared to a number of competing GARCH-type models in empirical applications

involving financial return time series (Harvey, 2013; Sucarrat, 2013).

In addition to the Beta-t-EGARCH model, Caivano and Harvey (2014) propose another member of

the EGARCH class of models, in which a DCS model is based on the EGB2 distribution. In such model,

the signal is a linear function of past values of the score of the conditional distribution. This model is

complementary to the model version under the Student’s t-distribution explored by Creal et al. (2011)

and Harvey (2013). The proposed model is then modelled to macroeconomic data, which empirical

results demonstrating that the exponential generalized beta distribution of the second kind may provide

a superior fit when applied to certain macroeconomic time series - e.g. exchange rates (Caivano and

Harvey, 2014).

More recently, a further EGARCH-type model which dynamic equation for the natural logarithm of

its scale is based on the conditional score following a generalized Student’s t-distribution was introduced

by Harvey and Lange (2017). Such a model configuration is able to encompass asymmetry and/or

skewness present in the input data, and the expression regarding the respective information matrix is

derived by the authors. The model usefulness is tested through empirical analyses on stock market

and commodity return series, which results potentially provide a flexible volatility modeling framework

that is robust to outliers as well (Harvey and Lange, 2017).

2.3. MS-DCS models

Since the influential study of Hamilton (1989), MS models have been extensively applied to economic

data. Depending on the sample period and data characteristics, the dependence series structure may

suffer breaks, which are more frequent and noticeable in turbulent times, such as during financial crisis

and/or financial contagion episodes (e.g. Global Financial Crisis of 2007-2008). In such cases, MS

models are considered as an effective approach to properly capture abrupt changes in the volatility

and correlations temporal progress (Creal et al., 2013; Bazzi et al., 2017; Bernardi and Catania,

2019). A regime switching approach is introduced by Boudt et al. (2012) in order to model and

forecast the volatility and correlation of financial time series. The proposed model exploits the state

variables to predict the switching probabilities, being the state transition dynamics dependent upon

the score of the density function. Through the application of this model to data of deposit bank holding

companies in the US from 1994 to 2011, it is found evidence of temporal variation of the state switching

probabilities as well as the within-regime volatility of most financial institutions in the sample, whereas

the equicorrelation within-state dynamics apparently remained unchanged through the sample period.

A MS augmented Dickey–Fuller (MS-ADF) unit root test, to identify covariance stationarity and
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unit root subsample periods, is introduced by Holmes (2008). That study is then extended to the

DCS literature by Ayala et al. (2016), who propose a Monte Carlo simulation-based MS unit root

test, for which the data generating process is score-driven. Those authors use a MS-DCS model with

unit root for conditional location under the null hypothesis, and a MS autoregressive moving average

(MS-ARMA) model under the alternative hypothesis. Score-driven volatility dynamics are used both

under the null and alternative hypotheses. The unit root test is applied to the real effective exchange

rates (REERs) of several Latin America economies to test purchasing power theory.

Subsequently, Bazzi et al. (2017) propose a MS observation-driven model with state/regime transi-

tion probabilities that vary through time, being the temporal varying probability innovation produced

by the score of the likelihood function. The authors estimate the time-varying probabilities conditions

for stationarity and ergodicity convergence of the respective model. Based on empirical findings, the

authors argue that their model may be applied as a benchmark to regime/state switching models which

transition probabilities change through time.

Blazsek and Ho (2017) introduce MS-Beta-t-EGARCH to the DCS literature. More recently,

Blazsek et al. (2018) introduce alternative MS-DCS-EGARCH models, including MS-NIG-EGARCH.

Those authors show that the statistical performances of the proposed models are superior to that of

MS-Beta-t-EGARCH. Moreover, an empirical application is also provided in the work of Blazsek et al.

(2018), in which value-at-rik (VaR) and expected shortfall (ES) are studied for the US stock market.

3. Data and summary statistics

The empirical analyses in the present paper are based on daily G20 stock market returns, totalling

181,383 data points. As the empirical analyses are performed on each individual G20 stock market

return series pt (i.e. univariate analysis), then the sample period varies according to data availability,

being preferred the longest time period available for each stock market. Overall, the sample covers a

period at least longer than 20 years for every stock market. The end date is October 25, 2019 for all

countries except for Saudi Arabia, which stock market does not operate on Fridays and then it ends on

the last Thursday of the sample period (i.e. October 24, 2019). The start date varies from January 3,

1928 (in the case of the US) to January 2, 1998 (in the case of Italy).

More specifically, the input dataset consists of the following 20 stock markets return series based on

closing positions of daily price of each the G20 stock market benchmark index pt: MERVAL Index (Ar-

gentina), S&P/ASX 300 (Australia), Ibovespa (Brazil), S&P/TSX Composite Index (Canada), Shang-

hai Stock Exchange Composite Index (China), CAC 40 (France), DAX (Germany), S&P BSE SENSEX

Index (India), Jakarta Stock Exchange Composite Index (Indonesia), FTSE MIB Index (Italy), Nikkei

225 (Japan), S&P/BMV IPC (Mexico), MOEX Russia Index (Russia), Tadawul All Share Index (Saudi

Arabia), FTSE/JSE Africa All Share Index (South Africa), Korea Stock Exchange KOSPI Index (South

Korea), IBEX 35 Index (Spain), Borsa Istanbul 100 Index (Turkey), FTSE 100 Index (UK) and S&P

500 Index (US). All data are from Bloomberg.

In addition, in terms of data pre-processing, the raw stock market input dataset was prepared in

order to transform the stock market indices pt into daily log-returns yt = ln(pt/pt−1). Further detailed

information of the input dataset and related log returns summary statistics are reported in Table 1.
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Following stylized facts reported in the literature, most of the series has mean around zero, negative

skewness and excess kurtosis (i.e. fat-tailedness). Therefore, according to the normality test outputs

reported in Table 1, there is statistical evidence that none of the series should follow a Gaussian

distribution. Moreover, the results of the correlation between the squared returns in time t and its

respective previous non-squared return in time t− 1 indicate that they are most frequently negatively

correlated, being the correlation coefficient usually very low (i.e. around −0.06 on average).

4. Model specification and properties

In this section, the model specifications as well as respective data distributions are formulated for

all MS-DCS-EGARCH models of this paper. The model specification and statistical inference of the

non-path-dependent MS-t-GARCH model are not presented in the present paper, but we refer to the

works of Bollerslev (1987), Glosten et al. (1993), Klaassen (2002) and Abramson and Cohen (2007).

4.1. MS models

In the empirical part of this paper, MS volatility models with two regimes are used, where the

stochastic process of st ∈ {1, 2} for t = 1, . . . , T , is defined by using the following transition probability

matrix:

P =

[
Pr(st = 1|st−1 = 1) Pr(st = 2|st−1 = 1)

Pr(st = 1|st−1 = 2) Pr(st = 2|st−1 = 2)

]
=

(
p 1− p

1− q q

)
(1)

where p and q are the transition probability parameters. The two-regime MS volatility models of

this paper can be extended to multi-regime MS volatility models in a straightforward manner. The

Markov chain (s1, . . . , sT ) is strictly stationary with time-invariant probabilities π∗(1) = Pr(st =

1) = (1 − q)/(2 − p − q) and π∗(2) = 1 − π∗(1). In the statistical inference, the following filtered

probabilities are also used: πt(1) = Pr(st = 1|y1, . . . , yt−1) as well as πt(2) = Pr(st = 2|y1, . . . , yt−1),

and π̃t(1) = Pr(st = 1|y1, . . . , yt) as well as π̃t(2) = Pr(st = 2|y1, . . . , yt). These filtered probabilities

are computed recursively for t = 1, . . . , T , as follows:

πt(1) = pπ̃t−1(1) + (1− q)π̃t−1(2) (2)

π̃t(1) =
f(yt|y1, . . . , yt−1, st = 1; Θ)πt(1)

f(yt|y1, . . . , yt−1, st = 1; Θ)πt(1) + f(yt|y1, . . . , yt−1, st = 2; Θ)πt(2)
(3)

where πt(2) = 1− πt(1), π̃t(2) = 1− π̃t(1), π̃0(1) = π∗(1) and π̃0(2) = π∗(2) are used for initialization.

Given the ML parameter estimates of the MS score-driven volatility model, statistical inferences on st

are also made by using the following smoothed probabilities of regimes Pr(st|y1, . . . , yT ):

Pr(st = j|y1, . . . , yT ) =
∑
k=1,2

Pr(st = j, st+1 = k|y1, . . . , yT ) (4)
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for t = 1, . . . , T , where:

Pr(st = j, st+1 = k|y1, . . . , yT ) ' Pr(st+1 = k|y1, . . . , yT ) Pr(st+1 = k|st = j)π̃t(j)

πt+1(k)
(5)

for j = 1, 2 and k = 1, 2 (Kim and Nelson, 1999). The smoothed probabilities are computed recursively

for t = T, . . . , 1. The recursion is started at t = T , by using the ML estimates of p, q, πT (k) and π̃T (k).

4.2. MS-EGARCH model

The general form of all MS-EGARCH models, for the daily log-return of a financial asset, is:

yt = c(st) + exp[λt(st)]εt(st) (6)

for days t = 1, . . . , T , where yt = ln(pt/pt−1); for p0 pre-sample data are used. Parameter c(st) is

a regime-dependent constant parameter, and εt(st) is the regime-dependent error term for which the

regime dependence is due to the regime-switching shape parameters. The log of the regime-dependent

scaling parameter is specified as:

λt(st) = ω(st) + β(st)λt−1(st) + α(st)ut−1(st) + α∗(st)sgn[−εt−1(st)][ut−1(st) + 1]

= ω(st) + β(st)λt−1(st) + gt−1(st)
(7)

for days t = 2, . . . , T ; for day t = 1 parameters λ1(1) and λ1(2) are used for initialization. The latter

equation refers to a score-driven MS-EGARCH model with leverage effects, in which the following

variables are used: λt−1(st) ≡ E[λt−1(st−1)|y1, . . . , yt−1, st], ut−1(st) ≡ E[ut−1(st−1)|y1, . . . , yt−1, st],

and εt−1(st) ≡ E[εt−1(st−1)|y1, . . . , yt−1, st]. These expectations are computed with respect to st−1, by

conditioning on (y1, . . . , yt−1, st) (Klaassen, 2002); further details are presented in Appendix A. An

advantage of the use of these expectations in EGARCH models is that in this way path-dependence on

regimes is avoided, hence the statistical inference of MS score-driven volatility models can be performed

as in classical MS models (e.g. Hamilton, 1989; Kim and Nelson, 1999). In the second expectation

ut(st) is used, which is the regime-dependent score function of the log-likelihood (LL) with respect

to λt(st). More formally, it is defined as: ut(st) = ∂ ln f(yt|y1, . . . , yt−1, st)/∂λt(st), where the log-

conditional density of yt is specified in the following sections for alternative probability distributions.

In addition, the regime-dependent conditional means µt(st) and conditional standard deviations (i.e.

conditional volatility) σt(st) of those probability distributions are detailed in Appendix B.

4.2.1. Skew-Gen-t distribution and its special cases

The error term follows the Skew-Gen-t distribution, as shown below:

εt(st) ∼ Skew-Gen-t{0, 1, tanh[δ1(st)], exp[δ2(st)] + 2, exp[δ3(st)]} (8)

where tanh(x) is the hyperbolic tangent function. Furthermore, δ1(st), δ2(st) and δ3(st) with st = 1, 2

are regime-dependent shape parameters that influence asymmetry, tail-heaviness and peakedness of

εt(st), respectively. The degrees of freedom parameter {exp[δ1(st)] + 2} is greater than two, hence,

the conditional variance of yt is finite. The asymmetry parameter is given by tanh(τt) ∈ (−1, 1), as
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required for Skew-Gen-t. The log conditional density of yt is detailed below:

ln f(yt|y1, . . . , yt−1, st) = δ3(st)− λt(st)− ln(2)− ln{exp[δ2(st)}+ 2]

exp[δ3(st)]
(9)

− ln Γ

{
exp[δ2(st)] + 2

exp[δ3(st)]

}
− ln Γ{exp[−δ3(st)]}+ ln Γ

{
exp[δ2(st)] + 3

exp[δ3(st)]

}

−exp[δ2(st)] + 3

exp[δ3(st)]
ln

{
1 +

|εt(st)|exp[δ3(st)]

{1 + tanh[δ1(st)]sgn[εt(st)]}exp[δ3(st)] × {exp[δ2(st)] + 2}

}
The regime-dependent score function is given by:

ut(st) =
|εt(st)|exp[δ3(st)]{exp[δ2(st)] + 3}

|εt(st)|exp[δ3(st)] + {1 + tanh[δ1(st)]sgn[εt(st)]}exp[δ3(st)]{exp[δ2(st)] + 2}
− 1 (10)

The definition of the updating term shown in Equation (10) provides the framework of MS-Skew-

Gen-t-EGARCH. The following two special cases of MS-Skew-Gen-t-EGARCH are also estimated: (a)

MS-Beta-t-EGARCH for the Student’s t-distribution, where tanh[δ1(st)] = 0 and exp[δ3(st)] = 2; (b)

MS-GED-EGARCH for GED, where tanh[δ1(st)] = 0 and exp[δ2(st) + 2]→∞.

Each score function is a different nonlinear transformation of εt(st). In Figure 1(a)-(c) those trans-

formations are presented, by using the estimates of single-regime Beta-t-EGARCH, GED-EGARCH

and Skew-Gen-t-EGARCH, respectively. The score functions of Figure 1 are estimated by using

stock index data from the US. The corresponding non-linear transformations are presented for the

interval εt ∈ [−50, 50] to illustrate the asymptotic properties of those transformations. According

to Figure 1(a) and 1(c), Beta-t-EGARCH uses symmetric asymptotic Winsorizing and Skew-Gen-t-

EGARCH uses asymmetric asymptotic Winsorizing, respectively, as |εt| → ∞. According to Figure 1(b),

GED-EGARCH uses an increasing symmetric transformation of εt as |εt| → ∞.

4.2.2. EGB2 distribution

The error term follows the EGB2 distribution, as shown below:

εt(st) ∼ EGB2{0, 1, exp[δ1(st)], exp[δ2(st)]} (11)

where δ1(st) and δ2(st) with st = 1, 2 are shape parameters. Parameters δ1(st) and δ2(st) influence

both asymmetry and tail-heaviness of εt(st). The log conditional density of yt is detailed below:

ln f(yt|y1, . . . , yt−1, st) = exp[δ1(st)]εt(st)− λt(st)− ln Γ{exp[δ1(st)]} (12)

− ln Γ{exp[δ2(st)]}+ ln Γ{exp[δ1(st)] + exp[δ2(st)]}

−{exp[δ1(st)] + exp[δ2(st)]} ln{1 + exp[εt(st)]}

10



The regime-dependent score function is given by:

ut(st) = {exp[δ1(st)] + exp[δ2(st)]}
εt(st) exp[εt(st)]

exp[εt(st)] + 1
− exp[δ1(st)]εt(st)− 1 (13)

The definition of the updating term shown in Equation (13) provides the framework of MS-EGB2-

EGARCH. In Figure 1(d), the non-linear transformation of εt is presented for US data. EGB2-

EGARCH uses an approximately linearly increasing transformation of εt that is asymmetric around

zero as |εt| → ∞.

4.2.3. NIG distribution

The error term follows the NIG distribution, as shown below:

εt(st) ∼ NIG{0, 1, exp[δ1(st)], exp[δ1(st)]tanh[δ2(st)]} (14)

where δ1(st) and δ2(st) with st = 1, 2 are regime-dependent shape parameters. Parameters δ1(st)

and δ2(st) influence tail-heaviness and asymmetry of εt(st); the asymmetry parameter is given by

exp[δ1(st)]tanh[δ2(st)]. The log conditional density of yt is detailed below:

ln f(yt|y1, . . . , yt−1, st) = δ1(st)− λt(st)− ln(π) + exp[δ1(st)]{1− tanh2[δ2(st)]}1/2 (15)

+ exp[δ1(st)]tanh[δ2(st)]εt(st) + lnK(1)

{
exp[δ1(st)]

√
1 + ε2t (st)

}
− 1

2
ln[1 + ε2t (st)]

where K(1)(x) is the modified Bessel function of the second kind of order 1. The regime-dependent

score function is given by:

ut(st) = −1− exp[δ1(st)]tanh[δ2(st)]εt(st) +
ε2t (st)

1 + ε2t (st)
(16)

+
exp[δ1(st)]ε

2
t (st)√

1 + ε2t (st)
×
K(0)

{
exp[δ1(st)]

√
1 + ε2t (st)

}
+K(2)

{
exp[δ1(st)]

√
1 + ε2t (st)

}
2K(1)

{
exp[δ1(st)]

√
1 + ε2t (st)

}
where K(j)(x) is the modified Bessel function of the second kind of order j. Such definition of the

updating term provides the framework of MS-NIG-EGARCH. In Figure 1(e), the non-linear trans-

formation of εt is presented for US data. NIG-EGARCH uses an approximately linearly increasing

transformation of εt that is asymmetric around zero as |εt| → ∞.

4.2.4. MXN distribution

The error term follows the MXN distribution, as shown below:

εt(st) ∼ MXN{0, 1, πtanh[δ1(st)], exp[δ2(st)]} (17)

where δ1(st) and δ2(st) with st = 1, 2 are regime-dependent shape parameters, which influence tail-
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heaviness and asymmetry of εt(st). The log conditional density of yt is detailed below:

ln f(yt|y1, . . . , yt−1, st) = −λt(st) + 2 exp[δ2(st)] ln {2cos{πtanh[δ1(st)]/2}} − ln(2π) (18)

− ln Γ{2 exp[δ2(st)]}+ πtanh[δ1(st)]εt(st) + 2 ln |Γ{exp[δ2(st)] + iεt(st)}|

where cos(x) is the cosine function and i is the imaginary unit. The following notation is introduced:

g[λt(st)] = Γ {exp[δ2(st)] + i[yt − c(st)] exp[−λ(st)]}, being parameter λt(st) a real number. Therefore,

∂ ln |g[λt(st)]|/∂λt(st) = Re {g′[λt(st)]/g[λt(st)]}, where Re(z) is the real part of complex number z.

Considering the fact that Γ′(x) = Γ(x)Ψ(0)(x), where Ψ(0)(x) is the digamma function, the regime-

dependent score function is given by:

ut(st) = 2Re
{
−iεt(st)Ψ(0)[exp[δ2(st)] + iεt(st)]

}
− πtanh[δ1(st)]εt(st)− 1 (19)

The definition above of the updating term provides the framework of MS-MXN-EGARCH. In Figure 1(e),

the non-linear transformation of εt is presented for US data. MXN-EGARCH uses an approximately

linearly increasing transformation of εt that is asymmetric around zero as |εt| → ∞.

5. Statistical inference

Score-driven MS-EGARCH models are estimated by using the ML method, as follows:

Θ̂ML = arg max
Θ

LL(y1, . . . , yT ; Θ) = arg max
Θ

T∑
t=1

ln

[
2∑
i=1

πt(i)f(yt|y1, . . . , yt−1, st = i; Θ)

]
(20)

Estimations are performed by using alternative start values of parameters, in order to find a global

maximum. In the numerical maximization of the LL function, the convergence tolerance for gradient is

10−5 for all the parameters. The inverse information matrix is used for the estimation of the standard

errors of Θ̂ML (Harvey, 2013; Creal et al., 2011, 2013). The standard errors of transformed parameters

are computed by using the delta method (e.g. Davidson and MacKinnon, 2004).

The following conditions ensure the covariance stationarity of λt(st) (Condition 1), the covariance

stationarity of the contributions to the gradient vector (Conditions 1 to 3), the covariance stationarity

of the contributions to the information matrix (Conditions 1 to 4), and the invertibility of the score-

driven MS-EGARCH model (Condition 5):

Condition 1 is the covariance stationarity of λt(st), which is expressed as:

λt(st) = ω(st) + β(st)λt−1(st) + gt−1(st)

= ω(st) + β(st)E[λt−1(st−1)|y1, . . . , yt−1, st] + E[gt−1(st−1)|y1, . . . , yt−1, st]

= ω(st) + β(st)λt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st)

+β(st)λt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st)

+gt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st)

+gt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st)

(21)

To show the condition of covariance stationarity of λt(st), the conditional mean E[λt(st)|y1, . . . , yt−1, st]
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is evaluated for both sides of Equation (21), from which we consider the following terms:

E[λt−1(st−1) Pr(st−1|y1, . . . , yt−1, st)|y1, . . . , yt−1, st]

=
∫
{y1,...,yt−1} λt−1(st−1) Pr(st−1|y1, . . . , yt−1, st)h(y1, . . . , yt−1|st)d(y1, . . . , yt−1)

=
∫
{y1,...,yt−1} λt−1(st−1) Pr(st−1|st)h(y1, . . . , yt−1|st−1, st)d(y1, . . . , yt−1)

= Pr(st−1|st)E[λt−1(st−1)|y1, . . . , yt−2, st−1]

(22)

E[gt−1(st−1) Pr(st−1|y1, . . . , yt−1, st)|y1, . . . , yt−1, st]

=
∫
{y1,...,yt−1} gt−1(st−1) Pr(st−1|y1, . . . , yt−1, st)h(y1, . . . , yt−1|st)d(y1, . . . , yt−1)

=
∫
{y1,...,yt−1} gt−1(st−1) Pr(st−1|st)h(y1, . . . , yt−1|st−1, st)d(y1, . . . , yt−1)

= Pr(st−1|st)E[gt−1(st−1)|y1, . . . , yt−2, st−1]

(23)

where h is a joint density function and the value of st−1 is not specified as the expectation is with

respect to {y1, . . . , yt−1}. Thus, E[λt(st)|y1, . . . , yt−1, st] can be recursively constructed as follows:

E[λt(st)|y1, . . . , yt−1, st] = β(st) Pr(st−1|st)E[λt−1(st−1)|y1, . . . , yt−2, st−1]

+ Pr(st−1|st)E[gt−1(st−1)|y1, . . . , yt−2, st−1]
(24)

The probability Pr(st−1|st) in Equation (24) for st = 1, 2 and st−1 = 1, 2 is given by:

Pr(st−1 = 1|st = 1) = Pr(st = 1|st−1 = 1) = p

Pr(st−1 = 2|st = 1) = π∗(2)
π∗(1) Pr(st = 1|st−1 = 2) = π∗(2)

π∗(1)(1− q)
Pr(st−1 = 1|st = 2) = π∗(1)

π∗(2) Pr(st = 2|st−1 = 1) = π∗(1)
π∗(2)(1− p)

Pr(st−1 = 2|st = 2) = Pr(st = 2|st−1 = 2) = q

(25)

Based on Equations (24) and (25) and by considering all possible values of st and st−1 in Equation (24),

the following matrix is defined:

E1 =

[
β(1)p β(1)π

∗(2)
π∗(1)(1− q)

β(2)π
∗(1)
π∗(2)(1− p) β(2)q

]
(26)

If the maximum modulus of eigenvalues, C1, of matrix E1 is less than one, then Condition 1 is satisfied.

Moreover, Condition 2, denoted as C2, holds if E[u2−i
t−1(st)[∂ut−1(st)/∂λt−1(st)]

i] <∞, where i = 0, 1, 2

for st = 1, 2, and define the derivative of the score function as:

∂ut−1(st)

∂λt−1(st)
= E

[
∂ut−1(st−1)

∂λt−1(st−1)
|y1, . . . , yt−1, st

]
(27)

where the expected value is with respect to st−1. For Condition 3, the score function uses the partial
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derivative of λt(st) with respect to α∗(st) as follows:

∂λt(st)

∂α∗(st)
= β(st)

∂λt−1(st)

∂α∗(st)
+ α(st)

∂ut−1(st)

∂α∗(st)
+ α∗(st)sgn[−εt−1(st)]

∂ut−1(st)

∂α∗(st)
(28)

+sgn[−εt−1(st)][ut−1(st) + 1]

Equation (28) can be written as:

∂λt(st)

∂α∗(st)
= Xt−1(st)

∂λt−1(st)

∂α∗(st)
+ sgn[−εt−1(st)][ut−1(st) + 1] (29)

where

Xt−1(st) = β(st) + {α(st) + α∗(st)sgn[−εt−1(st)]}
∂ut−1(st)

∂λt−1(st)
(30)

For Condition 3, the same arguments hold as for Condition 1. Thus, we define the following:

E3 =

{
|E[Xt−1(st = 1)]|p |E[Xt−1(st = 1)]|π

∗(2)
π∗(1)(1− q)

|E[Xt−1(st = 2)]|π
∗(1)
π∗(2)(1− p) |E[Xt−1(st = 2)]|q

}
(31)

where the expectations are estimated by using sample average. If the maximum modulus of eigenvalues,

C3, of matrix E3 is less than one, then Condition 3 is satisfied. For the partial derivatives with respect

to ω(st), β(st) and α(st), the following results are obtained:

∂λt(st)

∂ω(st)
= Xt−1(st)

∂λt−1(st)

∂ω(st)
+ 1 (32)

∂λt(st)

∂β(st)
= Xt−1(st)

∂λt−1(st)

∂β(st)
+ λt−1(st) (33)

∂λt(st)

∂α(st)
= Xt−1(st)

∂λt−1(st)

∂α(st)
+ ut−1(st) (34)

Thus, C3 ensures the stability of the contributions to the score function. For Condition 4, the con-

tributions to the information matrix use the outer product of the contributions to the score function.

Thus, the information matrix uses the following:[
∂λt(st)

∂α∗(st)

]2

=

{
Xt−1(st)

∂λt−1(st)

∂α∗(st)
+ sgn[−εt−1(st)][ut−1(st) + 1]

}2

(35)

= X2
t−1(st)

[
∂λt−1(st)

∂α∗(st)

]2

+ 2Xt−1(st)
∂λt−1(st)

∂α∗(st)
sgn[−εt−1(st)][ut−1(st) + 1]
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+sgn2[−εt−1(st)][ut−1(st) + 1]2

For Condition 4, the same arguments hold as for Condition 1. Thus, the following matrix is defined:

E4 =

{
E[X2

t−1(st = 1)]p E[X2
t−1(st = 1)]π

∗(2)
π∗(1)(1− q)

E[X2
t−1(st = 2)]π

∗(1)
π∗(2)(1− p) E[X2

t−1(st = 2)]q

}
(36)

where the expectations are estimated by using sample average. If the maximum modulus of eigenvalues,

C4, of matrix E4 is less than one, then Condition 4 is satisfied. For all combinations of the partial

derivatives with respect to ω(st), β(st), α
∗(st) and α(st), the same condition ensures the stability of

the contributions to the information matrix. Conditions 2 to 4 are extensions of the corresponding

conditions of the work of Harvey (2013) for score-driven MS models. For Condition 5, the result

on invertibility of single-regime observation-driven models from the work of Blasques et al. (2018)

is extended to the MS-DCS-EGARCH model. For the empirical version of the regime-dependent

Lyapunov condition for all MS DCS-EGARCH models of this paper, the following statistic is defined:

C5(st) =
∂λt(st)

∂λt−1(st)
= β(st) +

{
α+ α∗sgn[−εt−1(st)]

∂ut−1(st)

∂λt−1(st)

}
(37)

for t = 2, . . . , T . By using the stationary probabilities for st, Condition 5 holds if:

C5 =
1

T − 1

T∑
t=2

ln |C5(1)× πt(1) + C5(2)× πt(2)| < 0 (38)

Conditions 1 and 3 to 5 are empirically studied in the next section of empirical results, while Condition 2

is used as a maintained assumption in this paper.

6. Empirical results

In this section, empirical results for the ML estimates of single-regime and MS versions of t-

GARCH, Beta-t-EGARCH, GED-EGARCH, Skew-Gen-t-EGARCH, EGB2-EGARCH, NIG-EGARCH

and MXN-EGARCH are presented for the G20 dataset. For the comparison of statistical performances

of different models, the LL, Akaike information criterion (AIC), Bayesian information criterion (BIC)

and Hannan–Quinn information criterion (HQC) likelihood-based models performance metrics are used

(e.g. Hamilton, 1994; Davidson and MacKinnon, 2004). The use of these metrics for DCS models is

supported by the work of Harvey (2013). For all stock markets, both single-regime and MS specifica-

tions are estimated in order to validate the use of the regime-switching volatility models. To show the

quality of the ML estimates, for the single-regime models only the estimate of C1 is reported, while for

the MS models the estimates of C1 and C3 to C5 are reported.

The first result of this paper is that the regimes of MS volatility model are not separated effectively

for several stock markets (i.e. the two regimes switch very frequently in order to meaningfully identify

periods of high and low volatility). Therefore, for those stock markets, the statistical performances of

single-regime volatility models are compared (Table 2).

The estimation results in Table 2, with the exceptions of Argentina and Brazil, support the use of

15



a DCS-EGARCH model as an alternative to t-GARCH. The estimation results for the remaining stock

markets are presented in Table 2 suggest that the best volatility specifications are Beta-t-EGARCH and

Skew-Gen-t-EGARCH. For India and Turkey, Beta-t-EGARCH is superior to Skew-Gen-t-EGARCH,

according to the AIC, BIC and HQC metrics. For Indonesia, Saudi Arabia and South Africa, Skew-

Gen-t-EGARCH is superior to Beta-t-EGARCH, according to the AIC, BIC and HQC metrics. For

China and South Korea, the AIC-, BIC- and HQC-based results are mixed for Beta-t-EGARCH and

Skew-Gen-t-EGARCH, suggesting that the statistical performances of those models are similar. GED-

EGARCH is not supported for any of the stock markets for single-regime models (Table 2). According

to the LL, AIC, BIC and HQC metrics, the novel MXN-EGARCH specification is superior to t-GARCH

for the stock markets in China, Indonesia, Saudi Arabia and South Africa. However, for all stock mar-

kets in Table 2, Beta-t-EGARCH or Skew-Gen-t-EGARCH is superior to MXN-EGARCH, according

to the LL, AIC, BIC and HQC metrics. Regarding the quality of the ML estimates, C1 never sug-

gests rejection of the asymptotic properties of the ML estimator for single-regime volatility models, as

detailed in Table 2.

In Table 3(a)-(d), for the stock markets for which the two switching regimes are effectively sepa-

rated, the likelihood-based models performance metrics and model diagnostics results are presented for

the single-regime and MS volatility specifications. With the exception of Russia, the DCS-EGARCH

specifications are superior to t-GARCH for all stock markets. The estimation results for the remain-

ing stock markets suggest that the best volatility specifications are single-regime or MS versions of

Beta-t-EGARCH, Skew-Gen-t-EGARCH and NIG-EGARCH. According to the LL, AIC, BIC and

HQC metrics, a MS-DCS-EGARCH specification is supported for the stock markets in: Canada

(MS-Skew-Gen-t-EGARCH or MS-NIG-EGARCH), France (MS-Beta-t-EGARCH or MS-Skew-Gen-

t-EGARCH), Germany (MS-Skew-Gen-t-EGARCH), Japan (MS-Skew-Gen-t-EGARCH), UK (MS-

Skew-Gen-t-EGARCH) and US (MS-Skew-Gen-t-EGARCH or MS-NIG-EGARCH).

On the other hand, some LL-based model performance metrics support a possible single-regime

DCS-EGARCH alternative for: Australia (Skew-Gen-t-EGARCH), Italy (Skew-Gen-t-EGARCH), Mex-

ico (Beta-t-EGARCH) and Spain (Skew-Gen-t-EGARCH). However, for the stock markets in those

countries other model performance metrics support MS-DCS-EGARCH specifications. MS-GED-

EGARCH is not supported for any of the stock markets for MS models (Table 3). According to the LL,

AIC, BIC and HQC metrics, the novel MS-MXN-EGARCH specification is superior to MS-t-GARCH

for the stock markets in: Australia, Canada, Italy, Japan and US. However, according to the LL,

AIC, BIC and HQC metrics, MS-Beta-t-EGARCH, MS-Skew-Gen-t-EGARCH or MS-NIG-EGARCH

is superior to MS-MXN-EGARCH for all stock markets in Table 3. Regarding the quality of the ML

estimates, C1 and C3 to C5 never suggest rejection of the asymptotic properties of the ML estimator

for single-regime and MS volatility models, as shown in Table 3.

In Table 4(a)-(d), the ML parameter estimates are presented for the best-performing single-regime

and MS DCS-EGARCH specifications for the stock markets in: Australia, Canada, Germany, France,

Italy, Japan, Mexico, Spain, UK and US. For the same stock markets, Figures 2 to 5 present the

smoothed probabilities for st = 1, which can be associated with the ‘high-volatility’ period of the
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sample. The same figures also present the conditional volatility estimates, i.e. the ML estimates of

πt(1)σt(1) + πt(2)σt(2).

7. Conclusions and future research

In the present paper, we have provided, for the first time in the literature, the proposition and

application of the novel score-driven MXN-EGARCH volatility model, for which we have considered

both single-regime and MS specifications. The likelihood-based model selection metrics have shown that

the proposed MXN-EGARCH model, for several stock markets, provides better model performance than

the classical t-EGARCH model. Nevertheless, the statistical performance of the single-regime or MS

version of Beta-t-EGARCH, Skew-Gen-t-EGARCH or NIG-EGARCH has consistently been superior

to the statistical performance of MXN-EGARCH.

The statistical performance metrics have indicated that, for most of the stock markets, the Winsorizing-

type transformation of the error term that is provided by Beta-t-EGARCH and Skew-Gen-t-EGARCH

seems to be more appropriate than the GRACH-type quadratic transformation that is provided by t-

GARCH, or the quasi-linearly increasing transformations that are provided by GED-EGARCH, EGB2-

EGARCH, NIG-EGARCH or MXN-EGARCH; although for some stock markets, NIG-EGARCH has

worked effectively. For all MS-DCS-EGARCH specifications, new conditions of the asymptotic proper-

ties of the ML estimator have been presented, by extending relevant works from the existing literature

on dynamic volatility models. Those conditions have been supported for all models and all stock

markets in our empirical application. We have applied all models of conditional volatility to an inter-

nationally broad stock market index historical dataset from the G20 countries, by using all available

data, and providing the most general application of MS-DCS-EGARCH to the literature.

There are a number of future research opportunities related to the present paper: (a) Future works

may consider alternative data periods for each index, which may be motivated by application-specific

considerations. In this paper, historical data is used due to statistical generality of the results and also

for the particular property of DCS filters that they learn in an optimal way from the data according to

the Kullback–Leibler divergence measure (i.e. the longer the sample period, the better more effective

learning is provided by the filter).

(b) Moreover, future works may consider alternative estimation methods for MS-DCS-EGARCH

models, for example, the aforementioned non-path-dependent or the path-dependent estimation meth-

ods for MS models. The use of those alternative methods will also require the proofs of the correspond-

ing conditions of the asymptotic properties of the statistical estimators.

(c) Future works may also consider extended versions of the DCS-EGARCH and MS-DCS-EGARCH

models of this paper and use more than two switching regimes in empirical applications. The model

specification and ML estimation procedures can be extended in straightforward ways for such multi-

regime MS-DCS-EGARCH models. Those extended models might be effective for the separation of

regimes for those stock markets in which the two-regime volatility models have been ineffective.

(d) Future works may consider probability distributions alternative to the ones that are used in

this paper. Those distributions may provide more parsimonious estimates due to simplicity or better

model fit. In this paper, Beta-t-EGARCH and GED-EGARCH have been used due to relative model
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simplicity, and Skew-Gen-t-EGARCH, EGB2-EGARCH, NIG-EGARCH and MXN-EGARCH have

been used due to relatively complex tail shape and asymmetric properties.

(e) Finally, future works may also compare the forecasting performances of those models in portfolio

management applications, or use VaR backtests to study the performances of MS-DCS-EGARCH

models in financial risk management applications.
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Appendix A: Updating terms in score-driven MS-EGARCH

For all MS models of this paper, the conditional distribution of yt depends on st. This idea was

suggested by Gray (1996) for MS-GARCH, who used λt−1 = E[λt−1(st−1)|y1, . . . , yt−2] to integrate out

st−1 from λt−1(st−1). Klaassen (2002) extended the work of Gray (1996) for MS-GARCH, and used

λt−1(st) = E[λt−1(st−1)|y1, . . . , yt−1, st]. The variables that update the score-driven MS-EGARCH

models of the present paper are computed as follows:

λt−1(st = 1) = E[λt−1(st−1)|y1, . . . , yt−1, st = 1]

= λt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 1)+

λt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 1)

(A.1)

λt−1(st = 2) = E[λt−1(st−1)|y1, . . . , yt−1, st = 2]

= λt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 2)+

λt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 2)

(A.2)

ut−1(st = 1) = E[ut−1(st−1)|y1, . . . , yt−1, st = 1]

= ut−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 1)+

ut−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 1)

(A.3)

ut−1(st = 2) = E[ut−1(st−1)|y1, . . . , yt−1, st = 2]

= ut−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 2)+

ut−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 2)

(A.4)

εt−1(st = 1) = E[εt−1(st−1)|y1, . . . , yt−1, st = 1]

= εt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 1)+

εt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 1)

(A.5)
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εt−1(st = 2) = E[εt−1(st−1)|y1, . . . , yt−1, st = 2]

= εt−1(st−1 = 1) Pr(st−1 = 1|y1, . . . , yt−1, st = 2)+

εt−1(st−1 = 2) Pr(st−1 = 2|y1, . . . , yt−1, st = 2)

(A.6)

The conditional probabilities of the previous equations are computed as:

Pr(st−1 = 1|y1, . . . , yt−1, st = 1) =
pπ̃t−1(1)

pπ̃t−1(1) + (1− q)π̃t−1(2)
(A.7)

Pr(st−1 = 2|y1, . . . , yt−1, st = 1) = 1− Pr(st−1 = 1|y1, . . . , yt−1, st = 1) (A.8)

Pr(st−1 = 1|y1, . . . , yt−1, st = 2) =
(1− p)π̃t−1(1)

(1− p)π̃t−1(1) + qπ̃t−1(2)
(A.9)

Pr(st−1 = 2|y1, . . . , yt−1, st = 2) = 1− Pr(st−1 = 1|y1, . . . , yt−1, st = 2) (A.10)

and for the first period we use π̃0(1) = π∗(1) and π̃0(2) = π∗(2), as initial probabilities.

Appendix B: Regime-dependent conditional mean and volatility

For the Skew-Gen-t distribution, the conditional mean of yt is calculated as follows:

µt(st) = c(st)+2 exp[λt(st)]tanh[δ1(st)]{exp[δ2(st)]+2}exp[−δ3(st)]×
B
{

2
exp[δ3(st)]

, exp[δ2(st)]+1
exp[δ3(st)]

}
B
{

1
exp[δ3(st)]

, exp[δ2(st)]+2
exp[δ3(st)]

} (B.1)

and the conditional volatility of yt is given by:

σt(st) = exp[λt(st)]{exp[δ2(st)] + 2}exp[−δ3(st)]× (B.2)

×

{3tanh2[δ1(st)] + 1}B
{

3
exp[δ3(st)]

, exp[δ2(st)]
exp[δ3(st)]

}
B
[

1
exp[δ3(st)]

, exp[δ2(st)]+2
exp[δ3(st)]

] −
4tanh2[δ1(st)]B

2
{

2
exp[δ3(st)]

, exp[δ2(st)]+1
exp[δ3(st)]

}
B2
{

1
exp[δ3(st)]

, exp[δ2(st)]+2
exp[δ3(st)]

}


1/2

where B(x, y) is the Beta function.

For the EGB2 distribution, the conditional mean of yt is calculated as follows:

µt(st) = c(st) + exp[λt(st)]
{

Ψ(0){exp[δ1(st)]} −Ψ(0){exp[δ2(st)]}
}

(B.3)
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and the conditional volatility of yt refers to the following:

σt(st) = exp[λt(st)]
{

Ψ(1){exp[δ1(st)]}+ Ψ(1){exp[δ2(st)]}
}1/2

(B.4)

where Ψ(0)(x) and Ψ(1)(x) are digamma and trigamma functions, respectively.

For the NIG distribution, the conditional mean of yt is calculated as follows:

µt(st) = c(st) +
exp[λt(st)]tanh[δ2(st)]

{1− tanh2[δ2(st)]}1/2
(B.5)

and the conditional volatility of yt refers to the following:

σt(st) =

{
exp[2λt(st)− δ1(st)]

{1− tanh2[δ2(st)]}3/2

}1/2

(B.6)

For the MXN distribution, the conditional mean of yt is

µt(st) = c(st) + exp[λt(st) + δ2(st)]tan

{
πtanh[δ1(st)]

2

}
(B.7)

and the conditional volatility of yt is

σt(st) =

{
exp[2λt(st) + δ2(st)]

cos{πtanh[δ1(st)]}+ 1

}1/2

(B.8)
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Table 1. Descriptive statistics

Country Index name Ticker Start date T Mean SD Min Max Skewness Kurtosis SF test Corr

Argentina S&P MERVAL TR (ARS) MERVAL:IND 4-Apr-89 7, 530 0.0015 0.0305 −0.7571 0.3295 −1.4609 72.0144 0.8051∗∗∗ 0.0515

Australia S&P/ASX 300 AS52:IND 1-Jun-92 6, 941 0.0002 0.0093 −0.0870 0.0577 −0.4791 8.7237 0.9484∗∗∗ −0.1035

Brazil Ibovespa Brasil Sao Paulo Stock Exchange IBOV:IND 1-Mar-93 6, 593 0.0014 0.0223 −0.1723 0.2882 0.5011 13.4941 0.9212∗∗∗ −0.0991

Canada S&P/TSX Composite SPTSX:IND 4-Jan-77 10, 774 0.0003 0.0093 −0.1179 0.0937 −0.8664 16.7922 0.8881∗∗∗ −0.0977

China Shanghai Stock Exchange Composite SHCOMP:IND 20-Dec-90 7, 050 0.0005 0.0227 −0.1791 0.7192 5.3269 160.3742 0.7435∗∗∗ 0.0161

France CAC 40 CAC:IND 10-Jul-87 8, 184 0.0002 0.0136 −0.1014 0.1059 −0.1743 8.4698 0.9446∗∗∗ −0.0953

Germany Deutsche Boerse AG German Stock DAX:IND 2-Oct-59 15, 109 0.0002 0.0122 −0.1371 0.1200 −0.1583 10.3751 0.9345∗∗∗ −0.1075

India S&P BSE SENSEX SENSEX:IND 4-Apr-79 9, 341 0.0006 0.0158 −0.1366 0.1599 0.0044 9.4813 0.9368∗∗∗ −0.0462

Indonesia Jakarta Stock Exchange Composite JCI:IND 5-Apr-83 8, 908 0.0005 0.0150 −0.2253 0.4031 2.5833 86.7828 0.7519∗∗∗ 0.1435

Italy FTSE MIB FTSEMIB:IND 2-Jan-98 5, 537 0.0000 0.0153 −0.1333 0.1087 −0.2017 7.6288 0.9523∗∗∗ −0.1180

Japan Nikkei 225 NKY:IND 6-Jan-70 12, 273 0.0002 0.0129 −0.1614 0.1323 −0.4181 12.3871 0.9202∗∗∗ −0.1125

Mexico S&P/BMV IPC MEXBOL:IND 6-Apr-94 6, 429 0.0005 0.0143 −0.1431 0.1215 0.0655 10.3592 0.9262∗∗∗ −0.0826

Russia MOEX Russia IMOEX:IND 23-Sep-97 5, 528 0.0006 0.0249 −0.2334 0.2750 0.1185 20.7765 0.8340∗∗∗ −0.0136

Saudi Arabia Tadawul All Share SASEIDX:IND 30-Jan-94 6, 050 0.0002 0.0136 −0.1349 0.1640 −0.9515 19.7255 0.8146∗∗∗ −0.1359

South Africa FTSE/JSE Africa All Share JALSH:IND 3-Jul-95 6, 078 0.0004 0.0119 −0.1263 0.0727 −0.4374 9.0585 0.9465∗∗∗ −0.1119

South Korea Korea Stock Exchange KOSPI KOSPI:IND 5-Jan-80 10, 703 0.0003 0.0145 −0.1280 0.1128 −0.2382 8.8375 0.9281∗∗∗ −0.0547

Spain IBEX 35 IBEX:IND 7-Jan-87 8, 275 0.0002 0.0137 −0.1319 0.1348 −0.2048 9.3596 0.9416∗∗∗ −0.0864

Turkey Borsa Istanbul 100 XU100:IND 5-Jan-88 7, 948 0.0012 0.0252 −0.1998 0.1777 0.0231 7.5831 0.9432∗∗∗ −0.0076

UK FTSE 100 UKX:IND 3-Jan-84 9, 068 0.0002 0.0108 −0.1303 0.0938 −0.4773 12.4317 0.9295∗∗∗ −0.1287

US S&P 500 SPX:IND 3-Jan-28 23, 064 0.0002 0.0117 −0.2290 0.1537 −0.4391 21.9710 0.8678∗∗∗ −0.0971

Notes: United Kingdom (UK); United States (US); ‘Ticker’ indicates the Bloomberg ticker; for all counties the end date of the sample period is 25-Oct-2019, with the exception

of Saudi Arabia for which the end date of the sample period is 24-Oct-2019; T indicates the sample size; standard deviation (SD); For the Shapiro–Francia (SF) normality test

statistic (Shapiro and Francia, 1972), ∗∗∗ indicates the rejection of the normal distribution null hypothesis the 1% level; Corr indicates the estimate of Corr(y2t , yt−1).
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Table 2. Model performance and diagnostics; single-regime models for those countries for which MS is not identified

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Argentina LL 2.4328 2.4312 2.4231 2.4321 2.4293 2.4303 2.4291

AIC −4.8637 −4.8606 −4.8443 −4.8619 −4.8565 −4.8585 −4.8560

BIC −4.8572 −4.8541 −4.8378 −4.8536 −4.8492 −4.8512 −4.8486

HQC −4.8615 −4.8584 −4.8420 −4.8590 −4.8540 −4.8560 −4.8535

C1 0.9445 0.7989 0.7776 0.8466 0.8007 0.8024 0.8006

Brazil LL 2.5970 2.5969 2.5928 2.5970 2.5961 2.5961 2.5957

AIC −5.1919 −5.1916 −5.1835 −5.1912 −5.1898 −5.1897 −5.1889

BIC −5.1847 −5.1844 −5.1763 −5.1820 −5.1816 −5.1815 −5.1806

HQC −5.1894 −5.1892 −5.1810 −5.1880 −5.1870 −5.1869 −5.1860

C1 0.9722 0.8530 0.8532 0.8955 0.8529 0.8530 0.8532

China LL 2.7885 2.7938 2.7834 2.7950 2.7879 2.7919 2.7894

AIC −5.5751 −5.5856 −5.5648 −5.5873 −5.5735 −5.5816 −5.5766

BIC −5.5683 −5.5788 −5.5579 −5.5786 −5.5657 −5.5738 −5.5688

HQC −5.5728 −5.5833 −5.5624 −5.5843 −5.5708 −5.5789 −5.5739

C1 0.9426 0.8118 0.8157 0.8429 0.8132 0.8064 0.8095

India LL 2.9288 2.9298 2.9247 2.9298 2.9283 2.9286 2.9279

AIC −5.8562 −5.8580 −5.8480 −5.8577 −5.8550 −5.8556 −5.8541

BIC −5.8508 −5.8527 −5.8426 −5.8508 −5.8489 −5.8494 −5.8480

HQC −5.8543 −5.8562 −5.8462 −5.8554 −5.8529 −5.8535 −5.8521

C1 0.9641 0.8260 0.8375 0.8647 0.8292 0.8285 0.8304

Indonesia LL 3.2617 3.2785 3.2695 3.2807 3.2655 3.2732 3.2694

AIC −6.5217 −6.5554 −6.5376 −6.5594 −6.5293 −6.5446 −6.5370

BIC −6.5162 −6.5498 −6.5329 −6.5523 −6.5229 −6.5382 −6.5306

HQC −6.5198 −6.5535 −6.5360 −6.5570 −6.5271 −6.5424 −6.5348

C1 0.9300 0.7830 0.8115 0.8048 0.8172 0.8041 0.8185

Saudi Arabia LL 3.2840 3.2863 3.2843 3.2888 3.2861 3.2879 3.2871

AIC −6.5660 −6.5703 −6.5664 −6.5747 −6.5696 −6.5731 −6.5716

BIC −6.5593 −6.5626 −6.5586 −6.5647 −6.5607 −6.5642 −6.5627

HQC −6.5636 −6.5677 −6.5637 −6.5712 −6.5665 −6.5700 −6.5685

C1 0.9084 0.7249 0.7516 0.7785 0.7478 0.7324 0.7383

South Africa LL 3.1761 3.1772 3.1737 3.1791 3.1777 3.1777 3.1773

AIC −6.3499 −6.3521 −6.3450 −6.3553 −6.3528 −6.3527 −6.3520

BIC −6.3422 −6.3444 −6.3373 −6.3453 −6.3440 −6.3439 −6.3432

HQC −6.3472 −6.3494 −6.3424 −6.3518 −6.3498 −6.3496 −6.3489

C1 0.9684 0.8502 0.8478 0.8885 0.8506 0.8505 0.8499

South Korea LL 3.0542 3.0553 3.0489 3.0556 3.0534 3.0540 3.0531

AIC −6.1070 −6.1094 −6.0965 −6.1096 −6.1054 −6.1066 −6.1046

BIC −6.1023 −6.1046 −6.0918 −6.1035 −6.1000 −6.1011 −6.0992

HQC −6.1054 −6.1078 −6.0949 −6.1075 −6.1036 −6.1047 −6.1028

C1 0.9665 0.8205 0.8545 0.8669 0.8315 0.8281 0.8342

Turkey LL 2.4609 2.4610 2.4576 2.4610 2.4608 2.4609 2.4605

AIC −4.9201 −4.9202 −4.9135 −4.9198 −4.9196 −4.9198 −4.9190

BIC −4.9139 −4.9141 −4.9074 −4.9119 −4.9126 −4.9128 −4.9120

HQC −4.9180 −4.9181 −4.9114 −4.9171 −4.9172 −4.9174 −4.9166

C1 0.9625 0.8061 0.8206 0.8505 0.8098 0.8089 0.8109

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn information

criterion (HQC). Bold numbers indicate superior model performance metrics. C1 = β + α + α∗/2 for t-GARCH and C1 = |β| for

the rest of the volatility models. C1 < 1 suggests covariance stationarity for yt. Metrics C3 to C5 are not reported for DCS models.
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Table 3(a). Model performance and diagnostics for single-regime (SR) and Markov-switching (MS) volatility models

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Australia SR LL 3.4147 3.4164 3.4132 3.4188 3.4174 3.4173 3.4169

AIC −6.8273 −6.8308 −6.8244 −6.8350 −6.8324 −6.8323 −6.8316

BIC −6.8204 −6.8239 −6.8175 −6.8262 −6.8245 −6.8244 −6.8237

HQC −6.8249 −6.8284 −6.8220 −6.8320 −6.8297 −6.8296 −6.8288

C1 0.9705 0.8824 0.8725 0.9150 0.8863 0.8863 0.8854

Australia MS LL 3.4190 3.4195 3.4172 3.4227 3.4213 3.4213 3.4202

AIC −6.8333 −6.8344 −6.8298 −6.8396 −6.8375 −6.8375 −6.8353

BIC −6.8175 −6.8186 −6.8140 −6.8199 −6.8197 −6.8197 −6.8175

HQC −6.8279 −6.8290 −6.8244 −6.8328 −6.8313 −6.8314 −6.8292

C1 0.9646 0.9727 0.9691 0.9796 0.9776 0.9783 0.9795

C3 0.9457 0.9374 0.9607 0.9488 0.9498 0.9453

C4 0.9015 0.8890 0.9265 0.9082 0.9099 0.9021

C5 −0.0731 −0.0818 −0.0490 −0.0750 −0.0738 −0.0738

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Canada SR LL 3.5123 3.5124 3.5079 3.5157 3.5148 3.5149 3.5144

AIC −7.0233 −7.0236 −7.0145 −7.0297 −7.0280 −7.0283 −7.0273

BIC −7.0186 −7.0189 −7.0098 −7.0236 −7.0226 −7.0229 −7.0219

HQC −7.0217 −7.0220 −7.0129 −7.0276 −7.0262 −7.0265 −7.0255

C1 0.9631 0.8549 0.8588 0.8930 0.8558 0.8557 0.8562

Canada MS LL 3.5164 3.5156 3.5119 3.5203 3.5195 3.5199 3.5187

AIC −7.0298 −7.0284 −7.0209 −7.0369 −7.0356 −7.0364 −7.0341

BIC −7.0189 −7.0182 −7.0101 −7.0234 −7.0234 −7.0243 −7.0219

HQC −7.0261 −7.0250 −7.0172 −7.0324 −7.0315 −7.0323 −7.0300

C1 0.9575 0.9772 0.9884 0.9810 0.9808 0.9813 0.9811

C3 0.9133 0.9378 0.9319 0.9064 0.9072 0.9276

C4 0.8403 0.8946 0.8711 0.8271 0.8301 0.8643

C5 −0.1276 −0.1081 −0.0952 −0.1011 −0.1317 −0.0903

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

France SR LL 3.0516 3.0540 3.0462 3.0552 3.0529 3.0531 3.0521

AIC −6.1014 −6.1063 −6.0908 −6.1082 −6.1039 −6.1043 −6.1022

BIC −6.0954 −6.1003 −6.0848 −6.1005 −6.0970 −6.0974 −6.0954

HQC −6.0994 −6.1042 −6.0887 −6.1056 −6.1015 −6.1019 −6.0999

C1 0.9667 0.8664 0.8722 0.8998 0.8732 0.8726 0.8741

France MS LL 3.0585 3.0603 3.0548 3.0615 3.0581 3.0597 3.0570

AIC −6.1131 −6.1166 −6.1057 −6.1181 −6.1119 −6.1150 −6.1096

BIC −6.0994 −6.1029 −6.0920 −6.1010 −6.0964 −6.0996 −6.0942

HQC −6.1084 −6.1119 −6.1010 −6.1124 −6.1066 −6.1097 −6.1043

C1 0.9681 0.9836 0.9841 0.9857 0.9859 0.9796 0.9866

C3 0.9398 0.9431 0.9616 0.9393 0.9235 0.9559

C4 0.8907 0.9094 0.9272 0.8885 0.8667 0.9183

C5 −0.0879 −0.0688 −0.0614 −0.0871 −0.0908 −0.0740

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn information

criterion (HQC). Bold numbers indicate superior model performance metrics. C1 < 1 suggests covariance stationarity for yt.

C3 < 1 suggests covariance stationarity for the contributions to the gradient vector. C4 < 1 suggests covariance stationarity for the

contributions to the information matrix. C5 < 0 suggests that the DCS model is invertible. Metrics C3 to C5 are not reported for

single-regime DCS models.
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Table 3(b). Model performance and diagnostics for single-regime (SR) and Markov-switching (MS) volatility models

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Germany SR LL 3.1760 3.1767 3.1672 3.1773 3.1749 3.1749 3.1738

AIC −6.3512 −6.3525 −6.3334 −6.3535 −6.3487 −6.3487 −6.3465

BIC −6.3476 −6.3490 −6.3299 −6.3489 −6.3446 −6.3447 −6.3424

HQC −6.3500 −6.3513 −6.3322 −6.3520 −6.3473 −6.3474 −6.3451

C1 0.9642 0.8280 0.8408 0.8686 0.8326 0.8321 0.8347

Germany MS LL 3.1791 3.1805 3.1760 3.1823 3.1794 3.1804 3.1772

AIC −6.3560 −6.3589 −6.3499 −6.3619 −6.3565 −6.3584 −6.3519

BIC −6.3479 −6.3508 −6.3418 −6.3518 −6.3474 −6.3493 −6.3429

HQC −6.3533 −6.3562 −6.3472 −6.3585 −6.3535 −6.3554 −6.3489

C1 0.9549 0.9826 0.9820 0.9877 0.9881 0.9850 0.9803

C3 0.9216 0.9261 0.9530 0.9431 0.9317 0.9111

C4 0.8559 0.8713 0.9108 0.8975 0.8737 0.8417

C5 −0.1356 −0.1146 −0.0769 −0.1139 −0.1401 −0.0983

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Italy SR LL 2.9492 2.9509 2.9470 2.9540 2.9520 2.9521 2.9517

AIC −5.8958 −5.8992 −5.8915 −5.9048 −5.9012 −5.9013 −5.9005

BIC −5.8874 −5.8908 −5.8831 −5.8941 −5.8916 −5.8917 −5.8910

HQC −5.8929 −5.8963 −5.8886 −5.9011 −5.8978 −5.8980 −5.8972

C1 0.9740 0.8646 0.8634 0.9039 0.8681 0.8681 0.8687

Italy MS LL 2.9545 2.9557 2.9521 2.9603 2.9580 2.9572 2.9572

AIC −5.9032 −5.9056 −5.8983 −5.9134 −5.9096 −5.9079 −5.9080

BIC −5.8841 −5.8864 −5.8792 −5.8895 −5.8880 −5.8864 −5.8865

HQC −5.8965 −5.8989 −5.8917 −5.9051 −5.9021 −5.9004 −5.9005

C1 0.9576 0.9722 0.9884 0.9871 0.9912 0.9799 0.9886

C3 0.9271 0.9413 0.9541 0.9411 0.9379 0.9366

C4 0.8739 0.8944 0.9162 0.8954 0.8930 0.8922

C5 −0.0861 −0.0800 −0.0512 −0.0670 −0.0906 −0.0779

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Japan SR LL 3.1597 3.1633 3.1561 3.1648 3.1631 3.1638 3.1627

AIC −6.3183 −6.3255 −6.3110 −6.3282 −6.3250 −6.3262 −6.3240

BIC −6.3141 −6.3213 −6.3067 −6.3227 −6.3201 −6.3214 −6.3192

HQC −6.3169 −6.3241 −6.3096 −6.3264 −6.3234 −6.3246 −6.3224

C1 0.9601 0.8277 0.8195 0.8660 0.8266 0.8268 0.8261

Japan MS LL 3.1679 3.1700 3.1661 3.1724 3.1713 3.1698 3.1711

AIC −6.3331 −6.3374 −6.3297 −6.3416 −6.3397 −6.3367 −6.3392

BIC −6.3235 −6.3278 −6.3200 −6.3295 −6.3288 −6.3259 −6.3283

HQC −6.3299 −6.3342 −6.3264 −6.3375 −6.3361 −6.3331 −6.3356

C1 0.9523 0.9909 0.9891 0.9917 0.9920 0.9737 0.9914

C3 0.9339 0.9241 0.9525 0.9306 0.9011 0.9294

C4 0.8785 0.8719 0.9102 0.8738 0.8246 0.8714

C5 −0.1182 −0.1505 −0.1013 −0.1352 −0.1258 −0.1362

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn information

criterion (HQC). Bold numbers indicate superior model performance metrics. C1 < 1 suggests covariance stationarity for yt.

C3 < 1 suggests covariance stationarity for the contributions to the gradient vector. C4 < 1 suggests covariance stationarity for the

contributions to the information matrix. C5 < 0 suggests that the DCS model is invertible. Metrics C3 to C5 are not reported for

single-regime DCS models.
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Table 3(c). Model performance and diagnostics for single-regime (SR) and Markov-switching (MS) volatility models

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Mexico SR LL 3.0380 3.0389 3.0367 3.0393 3.0391 3.0391 3.0389

AIC −6.0739 −6.0757 −6.0713 −6.0758 −6.0757 −6.0758 −6.0753

BIC −6.0665 −6.0683 −6.0639 −6.0663 −6.0672 −6.0673 −6.0669

HQC −6.0713 −6.0731 −6.0688 −6.0725 −6.0728 −6.0728 −6.0724

C1 0.9721 0.8669 0.8618 0.9037 0.8653 0.8656 0.8653

Mexico MS LL 3.0430 3.0434 3.0417 3.0443 3.0440 3.0440 3.0439

AIC −6.0811 −6.0819 −6.0784 −6.0824 −6.0824 −6.0825 −6.0822

BIC −6.0642 −6.0651 −6.0615 −6.0614 −6.0635 −6.0635 −6.0632

HQC −6.0752 −6.0761 −6.0725 −6.0751 −6.0759 −6.0759 −6.0756

C1 0.9648 0.9800 0.9783 0.9834 0.9828 0.9828 0.9824

C3 0.9466 0.9423 0.9619 0.9447 0.9449 0.9448

C4 0.9024 0.8991 0.9272 0.8993 0.8997 0.8999

C5 −0.0784 −0.0867 −0.0543 −0.0814 −0.0810 −0.0824

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Russia SR LL 2.6672 2.6662 2.6578 2.6665 2.6643 2.6649 2.6636

AIC −5.3319 −5.3299 −5.3130 −5.3297 −5.3257 −5.3269 −5.3243

BIC −5.3236 −5.3216 −5.3046 −5.3189 −5.3162 −5.3173 −5.3147

HQC −5.3290 −5.3270 −5.3101 −5.3259 −5.3224 −5.3235 −5.3210

C1 0.9679 0.8387 0.8559 0.8767 0.8438 0.8423 0.8458

Russia MS LL 2.6724 2.6716 2.6631 2.6725 2.6696 2.6704 2.6691

AIC −5.3391 −5.3374 −5.3204 −5.3378 −5.3328 −5.3344 −5.3317

BIC −5.3199 −5.3182 −5.3012 −5.3139 −5.3112 −5.3128 −5.3102

HQC −5.3324 −5.3307 −5.3137 −5.3294 −5.3253 −5.3269 −5.3242

C1 0.9784 0.9926 0.9785 0.9932 0.9812 0.9931 0.9861

C3 0.9413 0.9319 0.9573 0.9294 0.9430 0.9401

C4 0.8897 0.8736 0.9179 0.8689 0.8941 0.8893

C5 −0.1128 −0.1073 −0.0846 −0.1103 −0.1191 −0.1022

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

Spain SR LL 3.0569 3.0603 3.0478 3.0615 3.0577 3.0582 3.0565

AIC −6.1121 −6.1188 −6.0939 −6.1209 −6.1134 −6.1145 −6.1111

BIC −6.1062 −6.1129 −6.0879 −6.1132 −6.1066 −6.1077 −6.1043

HQC −6.1101 −6.1168 −6.0919 −6.1183 −6.1111 −6.1122 −6.1088

C1 0.9666 0.8568 0.8680 0.8898 0.8633 0.8620 0.8645

Spain MS LL 3.0647 3.0641 3.0576 3.0660 3.0632 3.0619 3.0623

AIC −6.1256 −6.1244 −6.1113 −6.1272 −6.1221 −6.1195 −6.1202

BIC −6.1121 −6.1108 −6.0978 −6.1103 −6.1068 −6.1042 −6.1049

HQC −6.1210 −6.1198 −6.1067 −6.1214 −6.1169 −6.1143 −6.1150

C1 0.9549 0.9687 0.9670 0.9889 0.9718 0.9841 0.9731

C3 0.9120 0.9013 0.9522 0.9065 0.9416 0.9148

C4 0.6982 0.8823 0.9098 0.8322 0.8973 0.8455

C5 −0.1277 −0.1233 −0.0668 −0.1282 −0.0957 −0.1309

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn information

criterion (HQC). Bold numbers indicate superior model performance metrics. C1 < 1 suggests covariance stationarity for yt.

C3 < 1 suggests covariance stationarity for the contributions to the gradient vector. C4 < 1 suggests covariance stationarity for the

contributions to the information matrix. C5 < 0 suggests that the DCS model is invertible. Metrics C3 to C5 are not reported for

single-regime DCS models.
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Table 3(d). Model performance and diagnostics for single-regime (SR) and Markov-switching (MS) volatility models

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

UK SR LL 3.2949 3.2941 3.2890 3.2958 3.2946 3.2946 3.2942

AIC −6.5882 −6.5866 −6.5764 −6.5896 −6.5875 −6.5873 −6.5865

BIC −6.5827 −6.5811 −6.5709 −6.5826 −6.5812 −6.5811 −6.5803

HQC −6.5863 −6.5848 −6.5745 −6.5872 −6.5853 −6.5852 −6.5844

C1 0.9653 0.8537 0.8684 0.8936 0.8581 0.8581 0.8601

UK MS LL 3.2990 3.2992 3.2938 3.3016 3.2996 3.2996 3.2986

AIC −6.5945 −6.5949 −6.5841 −6.5988 −6.5952 −6.5952 −6.5933

BIC −6.5820 −6.5824 −6.5716 −6.5831 −6.5810 −6.5811 −6.5791

HQC −6.5903 −6.5906 −6.5799 −6.5935 −6.5904 −6.5904 −6.5885

C1 0.9660 0.9853 0.9836 0.9875 0.9880 0.9881 0.9881

C3 0.9438 0.9414 0.9569 0.9428 0.9432 0.9424

C4 0.8961 0.9058 0.9190 0.9014 0.9023 0.9020

C5 −0.0632 −0.0735 −0.0456 −0.0682 −0.0675 −0.0750

t-GARCH Beta-t-EGARCH GED-EGARCH Skew-Gen-t-EGARCH EGB2-EGARCH NIG-EGARCH MXN-EGARCH

US SR LL 3.3369 3.3386 3.3346 3.3404 3.3392 3.3395 3.3390

AIC −6.6732 −6.6767 −6.6686 −6.6801 −6.6777 −6.6784 −6.6773

BIC −6.6708 −6.6742 −6.6662 −6.6770 −6.6749 −6.6756 −6.6745

HQC −6.6724 −6.6759 −6.6678 −6.6791 −6.6768 −6.6775 −6.6764

C1 0.9671 0.8746 0.8763 0.9078 0.8762 0.8757 0.8763

US MS LL 3.3425 3.3426 3.3380 3.3447 3.3432 3.3444 3.3439

AIC −6.6836 −6.6839 −6.6745 −6.6877 −6.6848 −6.6873 −6.6863

BIC −6.6780 −6.6783 −6.6690 −6.6807 −6.6785 −6.6810 −6.6800

HQC −6.6818 −6.6821 −6.6727 −6.6854 −6.6828 −6.6853 −6.6842

C1 0.9847 0.9945 0.9909 0.9953 0.9957 0.9956 0.9944

C3 0.9555 0.9875 0.9701 0.9609 0.9517 0.9574

C4 0.9178 0.9832 0.9436 0.9272 0.9112 0.9241

C5 −0.0831 −0.0747 −0.0623 −0.0729 −0.0883 −0.0496

Notes: United Kingdom (UK); United States (US); log-likelihood (LL); Akaike information criterion (AIC); Bayesian information

criterion (BIC); Hannan–Quinn information criterion (HQC). Bold numbers indicate superior model performance metrics. C1 < 1

suggests covariance stationarity for yt. C3 < 1 suggests covariance stationarity for the contributions to the gradient vector. C4 < 1

suggests covariance stationarity for the contributions to the information matrix. C5 < 0 suggests that the DCS model is invertible.

Metrics C3 to C5 are not reported for single-regime DCS models.
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Table 4(a). Parameter estimates for the best-performing single-regime (SR) and Markov-switching (MS) volatility models

Skew-Gen-t-EGARCH, Australia Skew-Gen-t-EGARCH, Canada NIG-EGARCH, Canada Skew-Gen-t-EGARCH, Germany

c 0.0012∗∗∗(0.0002) c 0.0013∗∗∗(0.0001) c 0.0014∗∗∗(0.0001) c 0.0006∗∗∗(0.0001)

ω −0.0634∗∗∗(0.0118) ω −0.0608∗∗∗(0.0095) ω −0.0548∗∗∗(0.0087) ω −0.0852∗∗∗(0.0091)

β 0.9876∗∗∗(0.0024) β 0.9883∗∗∗(0.0019) β 0.9883∗∗∗(0.0019) β 0.9820∗∗∗(0.0019)

α 0.0316∗∗∗(0.0028) α 0.0464∗∗∗(0.0027) α 0.0473∗∗∗(0.0028) α 0.0481∗∗∗(0.0022)

α∗ 0.0245∗∗∗(0.0021) α∗ 0.0133∗∗∗(0.0017) α∗ 0.0124∗∗∗(0.0018) α∗ 0.0193∗∗∗(0.0015)

λ0 −5.9223∗∗∗(0.4195) λ0 −5.4566∗∗∗(0.3701) λ0 −4.9227∗∗∗(0.3628) λ0 −4.1004∗∗∗(0.4465)

δ1 −0.0843∗∗∗(0.0153) δ1 −0.0943∗∗∗(0.0115) δ1 0.7530∗∗∗(0.0734) δ1 −0.0284∗∗∗(0.0099)

δ2 2.0321∗∗∗(0.2278) δ2 1.9362∗∗∗(0.1400) δ2 −0.1132∗∗∗(0.0145) δ2 1.7428∗∗∗(0.0907)

δ3 0.7203∗∗∗(0.0548) δ3 0.6342∗∗∗(0.0379) δ3 0.8025∗∗∗(0.0321)

LL 3.4188 LL 3.5157 LL 3.5149 LL 3.1773

MS-Skew-Gen-t-EGARCH, Australia MS-Skew-Gen-t-EGARCH, Canada MS-NIG-EGARCH, Canada MS-Skew-Gen-t-EGARCH, Germany

c(1) 0.0020∗∗∗(0.0004) c(1) 0.0022∗∗∗(0.0002) c(1) 0.0025∗∗∗(0.0003) c(1) 0.0015∗∗∗(0.0002)

c(2) 0.0010∗∗∗(0.0002) c(2) 0.0011∗∗∗(0.0001) c(2) 0.0015∗∗∗(0.0002) c(2) 0.0002(0.0002)

ω(1) −0.1061∗∗∗(0.0242) ω(1) −0.0894∗∗∗(0.0153) ω(1) −0.0786∗∗∗(0.0141) ω(1) −0.0584∗∗∗(0.0112)

ω(2) −0.1045∗∗∗(0.0251) ω(2) −0.3976∗∗∗(0.0872) ω(2) −0.3831∗∗∗(0.0841) ω(2) −0.1222∗∗∗(0.0144)

β(1) 0.9779∗∗∗(0.0052) β(1) 0.9819∗∗∗(0.0032) β(1) 0.9823∗∗∗(0.0033) β(1) 0.9881∗∗∗(0.0025)

β(2) 0.9805∗∗∗(0.0049) β(2) 0.9267∗∗∗(0.0161) β(2) 0.9215∗∗∗(0.0173) β(2) 0.9743∗∗∗(0.0030)

α(1) 0.0324∗∗∗(0.0047) α(1) 0.0483∗∗∗(0.0039) α(1) 0.0490∗∗∗(0.0041) α(1) 0.0371∗∗∗(0.0040)

α(2) 0.0160∗∗∗(0.0045) α(2) 0.0487∗∗∗(0.0063) α(2) 0.0500∗∗∗(0.0067) α(2) 0.0504∗∗∗(0.0029)

α∗(1) 0.0281∗∗∗(0.0037) α∗(1) 0.0197∗∗∗(0.0025) α∗(1) 0.0181∗∗∗(0.0027) α∗(1) 0.0415∗∗∗(0.0029)

α∗(2) 0.0325∗∗∗(0.0033) α∗(2) 0.0135∗∗∗(0.0035) α∗(2) 0.0132∗∗∗(0.0041) α∗(2) 0.0122∗∗∗(0.0019)

λ0(1) −5.9179∗∗∗(2.2664) λ0(1) −5.4545∗∗∗(1.7270) λ0(1) −4.9196∗∗∗(1.5177) λ0(1) −4.3426∗∗(1.9918)

λ0(2) −6.0813∗∗∗(0.6963) λ0(2) −5.2252∗∗∗(1.3680) λ0(2) −4.6011∗∗∗(0.9895) λ0(2) −3.9713∗∗∗(1.1707)

δ1(1) −0.1187∗∗∗(0.0249) δ1(1) −0.1341∗∗∗(0.0164) δ1(1) 0.8892∗∗∗(0.0984) δ1(1) −0.0888∗∗∗(0.0160)

δ1(2) −0.0881∗∗∗(0.0247) δ1(2) −0.1013∗∗∗(0.0210) δ1(2) 0.8330∗∗∗(0.1344) δ1(2) 0.0057(0.0135)

δ2(1) 2.6756∗∗∗(0.4583) δ2(1) 1.9510∗∗∗(0.1926) δ2(1) −0.1573∗∗∗(0.0199) δ2(1) 2.8367∗∗∗(0.4828)

δ2(2) 1.8021∗∗∗(0.3410) δ2(2) 2.0455∗∗∗(0.3054) δ2(2) −0.1631∗∗∗(0.0303) δ2(2) 1.3682∗∗∗(0.0986)

δ3(1) 0.7340∗∗∗(0.0822) δ3(1) 0.6767∗∗∗(0.0519) p 0.9990∗∗∗(0.0005) δ3(1) 0.4820∗∗∗(0.0598)

δ3(2) 0.6922∗∗∗(0.0866) δ3(2) 0.5956∗∗∗(0.0671) q 0.9990∗∗∗(0.0005) δ3(2) 1.0118∗∗∗(0.0451)

p 0.9972∗∗∗(0.0014) p 0.9991∗∗∗(0.0005) p 0.9997∗∗∗(0.0004)

q 0.9976∗∗∗(0.0012) q 0.9990∗∗∗(0.0005) q 0.9998∗∗∗(0.0001)

LL 3.4227 LL 3.5203 LL 3.5199 LL 3.1823

σ(1) 0.0089 σ(1) 0.0084 σ(1) 0.0084 σ(1) 0.0114

σ(2) 0.0079 σ(2) 0.0068 σ(2) 0.0068 σ(2) 0.0107

Notes: Log-likelihood (LL); σ(st) = (1/T )
∑T

t=1 σt(st) is the regime-dependent mean volatility. Standard errors are reported in

parentheses. ∗∗ and ∗∗∗ indicate parameter significance at the 5% and 1% levels, respectively.
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Table 4(b). Parameter estimates for the best-performing single-regime (SR) and Markov-switching (MS) volatility models

Beta-t-EGARCH, France Skew-Gen-t-EGARCH, France Skew-Gen-t-EGARCH, Italy Skew-Gen-t-EGARCH, Japan

c 0.0003∗∗∗(0.0001) c 0.0011∗∗∗(0.0002) c 0.0015∗∗∗(0.0002) c 0.0011∗∗∗(0.0001)

ω −0.0847∗∗∗(0.0103) ω −0.0712∗∗∗(0.0106) ω −0.0469∗∗∗(0.0107) ω −0.0789∗∗∗(0.0094)

β 0.9818∗∗∗(0.0022) β 0.9849∗∗∗(0.0023) β 0.9901∗∗∗(0.0024) β 0.9837∗∗∗(0.0020)

α 0.0367∗∗∗(0.0028) α 0.0374∗∗∗(0.0028) α 0.0419∗∗∗(0.0034) α 0.0578∗∗∗(0.0029)

α∗ 0.0306∗∗∗(0.0021) α∗ 0.0308∗∗∗(0.0021) α∗ 0.0280∗∗∗(0.0024) α∗ 0.0279∗∗∗(0.0019)

λ0 −4.9224∗∗∗(0.4541) λ0 −4.9111∗∗∗(0.4530) λ0 −4.1315∗∗∗(0.3243) λ0 −4.5451∗∗∗(0.1923)

δ1 1.9277∗∗∗(0.0903) δ1 −0.0583∗∗∗(0.0136) δ1 −0.0868∗∗∗(0.0153) δ1 −0.0570∗∗∗(0.0100)

δ2 1.9051∗∗∗(0.1471) δ2 2.0724∗∗∗(0.2460) δ2 1.7560∗∗∗(0.1085)

δ3 0.7143∗∗∗(0.0435) δ3 0.6648∗∗∗(0.0585) δ3 0.6238∗∗∗(0.0333)

LL 3.0540 LL 3.0552 LL 2.9540 LL 3.1648

MS-Beta-t-EGARCH, France MS-Skew-Gen-t-EGARCH, France MS-Skew-Gen-t-EGARCH, Italy MS-Skew-Gen-t-EGARCH, Japan

c(1) 0.0002(0.0002) c(1) 0.0010∗∗∗(0.0004) c(1) 0.0035∗∗∗(0.0013) c(1) 0.0028∗∗∗(0.0003)

c(2) 0.0003∗∗(0.0001) c(2) 0.0011∗∗∗(0.0003) c(2) 0.0016∗∗∗(0.0003) c(2) 0.0007∗∗∗(0.0001)

ω(1) −0.0648∗∗∗(0.0122) ω(1) −0.0556∗∗∗(0.0124) ω(1) −0.1090∗∗∗(0.0421) ω(1) −0.6684∗∗∗(0.0878)

ω(2) −0.2466∗∗∗(0.0279) ω(2) −0.2025∗∗∗(0.0273) ω(2) −0.0573∗∗∗(0.0134) ω(2) −0.0333∗∗∗(0.0073)

β(1) 0.9853∗∗∗(0.0028) β(1) 0.9875∗∗∗(0.0028) β(1) 0.9737∗∗∗(0.0102) β(1) 0.8637∗∗∗(0.0182)

β(2) 0.9497∗∗∗(0.0058) β(2) 0.9591∗∗∗(0.0058) β(2) 0.9890∗∗∗(0.0030) β(2) 0.9932∗∗∗(0.0015)

α(1) 0.0254∗∗∗(0.0031) α(1) 0.0255∗∗∗(0.0031) α(1) 0.0326∗∗∗(0.0097) α(1) 0.0983∗∗∗(0.0121)

α(2) 0.0337∗∗∗(0.0057) α(2) 0.0358∗∗∗(0.0054) α(2) 0.0293∗∗∗(0.0044) α(2) 0.0410∗∗∗(0.0029)

α∗(1) 0.0193∗∗∗(0.0022) α∗(1) 0.0192∗∗∗(0.0023) α∗(1) 0.0165∗∗∗(0.0061) α∗(1) 0.0818∗∗∗(0.0089)

α∗(2) 0.0701∗∗∗(0.0053) α∗(2) 0.0695∗∗∗(0.0052) α∗(2) 0.0500∗∗∗(0.0039) α∗(2) 0.0232∗∗∗(0.0019)

λ0(1) −4.9022∗∗∗(0.9977) λ0(1) −4.9008∗∗∗(1.1124) λ0(1) −4.3407∗∗(1.7686) λ0(1) −3.7031(7.2104)

λ0(2) −4.9446∗∗(2.3141) λ0(2) −4.9353∗∗(2.3116) λ0(2) −4.1736∗∗∗(0.6207) λ0(2) −4.4979∗∗∗(0.5448)

δ1(1) 2.9567∗∗∗(0.2512) δ1(1) −0.0411∗∗(0.0195) δ1(1) −0.0905∗(0.0513) δ1(1) −0.1343∗∗∗(0.0263)

δ1(2) 1.5152∗∗∗(0.1112) δ1(2) −0.0784∗∗∗(0.0217) δ1(2) −0.1227∗∗∗(0.0191) δ1(2) −0.0455∗∗∗(0.0112)

p 0.9982∗∗∗(0.0007) δ2(1) 3.2789∗∗∗(0.6865) δ2(1) 2.7061∗∗(1.2051) δ2(1) 1.4592∗∗∗(0.2206)

q 0.9980∗∗∗(0.0009) δ2(2) 1.4967∗∗∗(0.1669) δ2(2) 1.7858∗∗∗(0.2196) δ2(2) 1.9450∗∗∗(0.1857)

δ3(1) 0.6566∗∗∗(0.0685) δ3(1) 0.7370∗∗∗(0.1676) δ3(1) 0.5981∗∗∗(0.0788)

δ3(2) 0.7285∗∗∗(0.0619) δ3(2) 0.7074∗∗∗(0.0673) δ3(2) 0.6495∗∗∗(0.0468)

p 0.9981∗∗∗(0.0007) p 0.9901∗∗∗(0.0040) p 0.9950∗∗∗(0.0017)

q 0.9979∗∗∗(0.0010) q 0.9967∗∗∗(0.0018) q 0.9984∗∗∗(0.0006)

LL 3.0603 LL 3.0615 LL 2.9603 LL 3.1724

σ(1) 0.0124 σ(1) 0.0124 σ(1) 0.0146 σ(1) 0.0116

σ(2) 0.0118 σ(2) 0.0118 σ(2) 0.0135 σ(2) 0.0114

Notes: Log-likelihood (LL); σ(st) = (1/T )
∑T

t=1 σt(st) is the regime-dependent mean volatility. Standard errors are reported in

parentheses. ∗∗ and ∗∗∗ indicate parameter significance at the 5% and 1% levels, respectively.

31



Table 4(c). Parameter estimates for the best-performing single-regime (SR) and Markov-switching (MS) volatility models

Beta-t-EGARCH, Mexico Skew-Gen-t-EGARCH, Mexico NIG-EGARCH, Mexico Skew-Gen-t-EGARCH, Spain

c 0.0004∗∗∗(0.0001) c 0.0007∗∗∗(0.0002) c 0.0007∗∗∗(0.0003) c 0.0011∗∗∗(0.0002)

ω −0.0526∗∗∗(0.0091) ω −0.0498∗∗∗(0.0098) ω −0.0460∗∗∗(0.0089) ω −0.0634∗∗∗(0.0098)

β 0.9887∗∗∗(0.0020) β 0.9893∗∗∗(0.0021) β 0.9888∗∗∗(0.0022) β 0.9865∗∗∗(0.0021)

α 0.0421∗∗∗(0.0034) α 0.0430∗∗∗(0.0035) α 0.0435∗∗∗(0.0035) α 0.0425∗∗∗(0.0030)

α∗ 0.0234∗∗∗(0.0022) α∗ 0.0235∗∗∗(0.0022) α∗ 0.0235∗∗∗(0.0023) α∗ 0.0221∗∗∗(0.0019)

λ0 −3.9531∗∗∗(0.3905) λ0 −3.9611∗∗∗(0.3975) λ0 −3.3726∗∗∗(0.3982) λ0 −4.0635∗∗∗(0.3037)

δ1 1.7257∗∗∗(0.1152) δ1 −0.0206(0.0144) δ1 0.8420∗∗∗(0.1105) δ1 −0.0539∗∗∗(0.0131)

δ2 2.1041∗∗∗(0.2478) δ2 −0.0189(0.0178) δ2 1.6157∗∗∗(0.1180)

δ3 0.5918∗∗∗(0.0532) δ3 0.7681∗∗∗(0.0439)

LL 3.0389 LL 3.0393 LL 3.0391 LL 3.0615

MS-Beta-t-EGARCH, Mexico MS-Skew-Gen-t-EGARCH, Mexico MS-NIG-EGARCH, Mexico MS-Skew-Gen-t-EGARCH, Spain

c(1) 0.0009∗∗∗(0.0002) c(1) 0.0014∗∗∗(0.0003) c(1) 0.0017∗∗∗(0.0004) c(1) 0.0041∗∗∗(0.0011)

c(2) 0.0001(0.0002) c(2) 0.0007∗∗(0.0003) c(2) 0.0008∗(0.0004) c(2) 0.0011∗∗∗(0.0002)

ω(1) −0.0923∗∗∗(0.0158) ω(1) −0.0858∗∗∗(0.0165) ω(1) −0.0750∗∗∗(0.0148) ω(1) −0.5270∗∗∗(0.2027)

ω(2) −0.0986∗∗∗(0.0215) ω(2) −0.0826∗∗∗(0.0225) ω(2) −0.0756∗∗∗(0.0221) ω(2) −0.0490∗∗∗(0.0086)

β(1) 0.9791∗∗∗(0.0036) β(1) 0.9807∗∗∗(0.0038) β(1) 0.9807∗∗∗(0.0039) β(1) 0.8797∗∗∗(0.0463)

β(2) 0.9802∗∗∗(0.0044) β(2) 0.9836∗∗∗(0.0046) β(2) 0.9830∗∗∗(0.0052) β(2) 0.9899∗∗∗(0.0019)

α(1) 0.0431∗∗∗(0.0047) α(1) 0.0444∗∗∗(0.0048) α(1) 0.0448∗∗∗(0.0048) α(1) 0.0335∗∗∗(0.0121)

α(2) 0.0215∗∗∗(0.0047) α(2) 0.0221∗∗∗(0.0047) α(2) 0.0229∗∗∗(0.0051) α(2) 0.0335∗∗∗(0.0032)

α∗(1) 0.0278∗∗∗(0.0030) α∗(1) 0.0281∗∗∗(0.0031) α∗(1) 0.0279∗∗∗(0.0031) α∗(1) 0.0211∗∗∗(0.0078)

α∗(2) 0.0320∗∗∗(0.0041) α∗(2) 0.0324∗∗∗(0.0041) α∗(2) 0.0319∗∗∗(0.0043) α∗(2) 0.0285∗∗∗(0.0022)

λ0(1) −4.0048∗∗∗(0.5137) λ0(1) −4.0176∗∗∗(0.5190) λ0(1) −3.4022∗∗∗(0.5215) λ0(1) −3.9410(7.3809)

λ0(2) −3.4302∗∗∗(0.9826) λ0(2) −3.4233∗∗∗(0.9177) λ0(2) −2.7860∗∗∗(0.9411) λ0(2) −4.0107∗∗∗(1.0395)

δ1(1) 1.7741∗∗∗(0.1428) δ1(1) −0.0317∗(0.0185) δ1(1) 0.8843∗∗∗(0.1373) δ1(1) −0.1158∗∗∗(0.0483)

δ1(2) 1.8787∗∗∗(0.2165) δ1(2) −0.0590∗∗(0.0269) δ1(2) 0.9948∗∗∗(0.2202) δ1(2) −0.0679∗∗∗(0.0140)

p 0.9998∗∗∗(0.0002) δ2(1) 2.2230∗∗∗(0.3321) δ2(1) −0.0464∗∗(0.0234) δ2(1) 5.7566(20.4684)

q 0.9998∗∗∗(0.0003) δ2(2) 2.2334∗∗∗(0.5651) δ2(2) −0.0558(0.0361) δ2(2) 1.4812∗∗∗(0.1261)

δ3(1) 0.5730∗∗∗(0.0668) p 0.9998∗∗∗(0.0002) δ3(1) 0.7113∗∗∗(0.1617)

δ3(2) 0.6208∗∗∗(0.1006) q 0.9998∗∗∗(0.0004) δ3(2) 0.7786∗∗∗(0.0493)

p 0.9998∗∗∗(0.0002) p 0.9937∗∗∗(0.0028)

q 0.9998∗∗∗(0.0004) q 0.9989∗∗∗(0.0005)

LL 3.0434 LL 3.0443 LL 3.0440 LL 3.0660

σ(1) 0.0134 σ(1) 0.0134 σ(1) 0.0135 σ(1) 0.0123

σ(2) 0.0113 σ(2) 0.0113 σ(2) 0.0113 σ(2) 0.0124

Notes: Log-likelihood (LL); σ(st) = (1/T )
∑T

t=1 σt(st) is the regime-dependent mean volatility. Standard errors are reported in

parentheses. ∗, ∗∗ and ∗∗∗ indicate parameter significance at the 10%, 5% and 1% levels, respectively.
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Table 4(d). Parameter estimates for the best-performing single-regime (SR) and Markov-switching (MS) volatility models

Skew-Gen-t-EGARCH, UK Skew-Gen-t-EGARCH, US NIG-EGARCH, US

c 0.0011∗∗∗(0.0002) c 0.0009∗∗∗(0.0001) c 0.0010∗∗∗(0.0001)

ω −0.0768∗∗∗(0.0110) ω −0.0459∗∗∗(0.0050) ω −0.0410∗∗∗(0.0046)

β 0.9843∗∗∗(0.0023) β 0.9910∗∗∗(0.0010) β 0.9912∗∗∗(0.0010)

α 0.0396∗∗∗(0.0027) α 0.0437∗∗∗(0.0018) α 0.0436∗∗∗(0.0018)

α∗ 0.0220∗∗∗(0.0018) α∗ 0.0245∗∗∗(0.0013) α∗ 0.0238∗∗∗(0.0013)

λ0 −4.5854∗∗∗(0.3108) λ0 −5.0305∗∗∗(0.4878) λ0 −4.5606∗∗∗(0.4689)

δ1 −0.0712∗∗∗(0.0129) δ1 −0.0556∗∗∗(0.0073) δ1 0.5745∗∗∗(0.0462)

δ2 2.1263∗∗∗(0.1227) δ2 2.0007∗∗∗(0.0946) δ2 −0.0741∗∗∗(0.0094)

δ3 0.7249∗∗∗(0.0361) δ3 0.5483∗∗∗(0.0246)

LL LL 3.3404 LL 3.3395

MS-Skew-Gen-t-EGARCH, UK MS-Skew-Gen-t-EGARCH, US MS-NIG-EGARCH, US

c(1) 0.0008∗∗∗(0.0002) c(1) 0.0018∗∗∗(0.0002) c(1) 0.0023∗∗∗(0.0002)

c(2) 0.0018∗∗∗(0.0003) c(2) 0.0006∗∗∗(0.0001) c(2) 0.0008∗∗∗(0.0001)

ω(1) −0.0569∗∗∗(0.0117) ω(1) −0.3597∗∗∗(0.0419) ω(1) −0.3704∗∗∗(0.0417)

ω(2) −0.0804∗∗∗(0.0218) ω(2) −0.0147∗∗∗(0.0038) ω(2) −0.0120∗∗∗(0.0034)

β(1) 0.9889∗∗∗(0.0025) β(1) 0.9286∗∗∗(0.0084) β(1) 0.9208∗∗∗(0.0091)

β(2) 0.9834∗∗∗(0.0045) β(2) 0.9972∗∗∗(0.0008) β(2) 0.9975∗∗∗(0.0008)

α(1) 0.0302∗∗∗(0.0036) α(1) 0.0697∗∗∗(0.0066) α(1) 0.0729∗∗∗(0.0069)

α(2) 0.0253∗∗∗(0.0042) α(2) 0.0279∗∗∗(0.0018) α(2) 0.0284∗∗∗(0.0018)

α∗(1) 0.0503∗∗∗(0.0033) α∗(1) 0.0611∗∗∗(0.0055) α∗(1) 0.0639∗∗∗(0.0057)

α∗(2) 0.0021(0.0029) α∗(2) 0.0183∗∗∗(0.0012) α∗(2) 0.0184∗∗∗(0.0012)

λ0(1) −4.5111∗∗∗(1.1007) λ0(1) −5.0828(3.6010) λ0(1) −4.6444(4.0487)

λ0(2) −4.6558∗∗∗(1.0875) λ0(2) −4.9841∗∗∗(0.5411) λ0(2) −4.4066∗∗∗(0.5197)

δ1(1) −0.0784∗∗∗(0.0169) δ1(1) −0.1002∗∗∗(0.0166) δ1(1) 0.2159∗∗∗(0.0801)

δ1(2) −0.0920∗∗∗(0.0232) δ1(2) −0.0404∗∗∗(0.0089) δ1(2) 0.9264∗∗∗(0.0672)

δ2(1) 1.7566∗∗∗(0.1626) δ2(1) 1.7569∗∗∗(0.1892) δ2(1) −0.1881∗∗∗(0.0251)

δ2(2) 2.3268∗∗∗(0.4207) δ2(2) 2.4118∗∗∗(0.1984) δ2(2) −0.0480∗∗∗(0.0105)

δ3(1) 0.7489∗∗∗(0.0558) δ3(1) 0.4547∗∗∗(0.0514) p 0.9940∗∗∗(0.0015)

δ3(2) 0.7909∗∗∗(0.0856) δ3(2) 0.5772∗∗∗(0.0361) q 0.9979∗∗∗(0.0005)

p 0.9977∗∗∗(0.0010) p 0.9951∗∗∗(0.0012)

q 0.9977∗∗∗(0.0009) q 0.9979∗∗∗(0.0005)

LL 3.3016 LL 3.3447 LL 3.3444

σ(1) 0.0097 σ(1) 0.0101 σ(1) 0.0105

σ(2) 0.0093 σ(2) 0.0096 σ(2) 0.0094

Notes: United Kingdom (UK); United States (US); log-likelihood (LL); σ(st) = (1/T )
∑T

t=1 σt(st) is the regime-dependent mean

volatility. Standard errors are reported in parentheses. ∗∗∗ indicates parameter significance at the 1% level.
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Fig. 1(a). Beta-t-EGARCH Fig. 1(b). GED-EGARCH

Fig. 1(c). Skew-Gen-t-EGARCH Fig. 1(d). EGB2-EGARCH

Fig. 1(e). NIG-EGARCH Fig. 1(f). MXN-EGARCH

Fig. 1. Score functions as functions of εt; single-regime DCS-EGARCH estimates are presented for US data
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Fig. 2(a). Australia, MS-Skew-Gen-t-EGARCH Fig. 2(b). Australia, MS-Skew-Gen-t-EGARCH

Fig. 2(c). Canada, MS-Skew-Gen-t-EGARCH Fig. 2(d). Canada, MS-Skew-Gen-t-EGARCH

Fig. 2(e). Canada, MS-NIG-EGARCH Fig. 2(f). Canada, MS-NIG-EGARCH

Fig. 2(g). Germany, MS-Skew-Gen-t-EGARCH Fig. 2(h). Germany, MS-Skew-Gen-t-EGARCH

Fig. 2. Smoothed probability of regime st = 1 (left) and conditional volatility πt(1)σt(1) + πt(2)σt(2) (right)
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Fig. 3(a). France, MS-Beta-t-EGARCH Fig. 3(b). France, MS-Beta-t-EGARCH

Fig. 3(c). France, MS-Skew-Gen-t-EGARCH Fig. 3(d). France, MS-Skew-Gen-t-EGARCH

Fig. 3(e). Italy, MS-Skew-Gen-t-EGARCH Fig. 3(f). Italy, MS-Skew-Gen-t-EGARCH

Fig. 3(g). Japan, MS-Skew-Gen-t-EGARCH Fig. 3(h). Japan, MS-Skew-Gen-t-EGARCH

Fig. 3. Smoothed probability of regime st = 1 (left) and conditional volatility πt(1)σt(1) + πt(2)σt(2) (right)
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Fig. 4(a). Mexico, MS-Beta-t-EGARCH Fig. 4(b). Mexico, MS-Beta-t-EGARCH

Fig. 4(c). Mexico, MS-Skew-Gen-t-EGARCH Fig. 4(d). Mexico, MS-Skew-Gen-t-EGARCH

Fig. 4(e). Mexico, MS-NIG-EGARCH Fig. 4(f). Mexico, MS-NIG-EGARCH

Fig. 4(g). Spain, MS-Skew-Gen-t-EGARCH Fig. 4(h). Spain, MS-Skew-Gen-t-EGARCH

Fig. 4. Smoothed probability of regime st = 1 (left) and conditional volatility πt(1)σt(1) + πt(2)σt(2) (right)
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Fig. 5(a). UK, Skew-Gen-t-EGARCH Fig. 5(b). UK, Skew-Gen-t-EGARCH

Fig. 5(c). US, Skew-Gen-t-EGARCH Fig. 5(d). US, Skew-Gen-t-EGARCH

Fig. 5(e). US, NIG-EGARCH Fig. 5(f). US, NIG-EGARCH

Fig. 5. Smoothed probability of regime st = 1 (left) and conditional volatility πt(1)σt(1) + πt(2)σt(2) (right)
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