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Abstract:

In the literature on score-driven models, the choice of the scaling parameter of the updating term of

the score-driven filter is an open question. It is presented in the literature that different choices of the

scaling parameter provide different score-driven models. There are no results on the optimal choice of

the scaling parameter. For potential users of score-driven models this ambiguity is problematic because

one must always choose a certain scaling parameter. The present short note is motivated by this issue.

We show that the commonly used alternative choices of the scaling parameter in the literature result

exactly in the same filtered estimates of signals. The empirical results reported in this letter are for

two very popular score-driven models, and they are easily generalizable to many other score-driven

models. This sends a message to potential users of score-driven models that the ambiguous choice of

the scaling parameter for score-driven models is not as problematic as it may initially seem, and it may

motivate more researchers in economics and finance to apply score-driven models in the future.

Keywords: dynamic conditional score (DCS); generalized autoregressive score (GAS); scaling param-

eter of conditional score function; quasi-autoregressive (QAR) model; Beta-t-EGARCH (exponential

generalized autoregressive conditional heteroskedasticity)

JEL classification: C22; C51; C52

∗Corresponding author. Address: School of Business, Universidad Francisco Marroqúın, Calle Manuel F. Ayau (6 Calle
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I. Introduction

In the literature on score-driven models, started by the works of Creal, Koopman, and Lucas (2008)

and Harvey and Chakravarty (2008), the choice of the scaling parameter of the updating term of the

score-driven filter is an open question. Different choices of the scaling parameter provide different score-

driven models (Creal, Koopman, and Lucas 2013, p. 779), and there are no results on the optimal

choice of the scaling parameter. In the literature, either unit scaling or inverse information matrix-

based scaling is used. For potential users of score-driven models this ambiguity is problematic, because

one always has to choose a certain scaling parameter. This letter is motivated by this issue.

We use score-driven models for the Student’s t-distribution, because this is the most common choice

in economic and financial applications of the score-driven models in the literature. We focus on: (i)

dynamic Student’s t location model (Harvey 2013), i.e. quasi-autoregressive (QAR) model; (ii) Beta-t-

EGARCH (exponential generalized autoregressive conditional heteroskedasticity) model of conditional

volatility (Harvey and Chakravarty 2008). Model (i) provides a robust estimate of the filtered signal of

the dependent variable, and model (ii) provides a robust estimate of the filtered signal of the conditional

volatility of the dependent variable. For robustness results, we refer to the works of Creal, Koopman,

and Lucas (2011, 2013), Harvey (2013), and Blasques, Koopman, and Lucas (2015).

We find that the commonly used choices for the scaling parameter result exactly in the same filtered

estimates of the signal. This result generalizes to a large number of score-driven models, indicating

that the ambiguous choice of the scaling parameter is not as problematic as it may initially seem.

The remainder of this letter is organized as follows: Section II describes the data, Section III

presents the score-driven models, and Section IV summarizes the results.

II. Data

We use data on (i) seasonally adjusted quarterly United States (US) real gross domestic product

(GDP) growth yGDP,t for the period of 1947 Q2 to 2019 Q4 (data source: Federal Reserve Economic

Data; ticker: GDPC1), and (ii) daily Vanguard Standard & Poor’s (S&P 500) exchange traded fund

(ETF) return yVOO,t for the period of September 10, 2010 to February 9, 2022 (data source: Yahoo

Finance; ticker: VOO). Variable yGDP,t is the log percentage change in the US real GDP level. Variable

yVOO,t is the log percentage change in the opening price of VOO. Descriptive statistics are presented
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in Table 1(a). We use the QAR(1) model for yGDP,t, which is motivated by likelihood-based model

selection metrics for AR(p) specifications with p = 0, 1, 2 (Table 1(b)). We use the constant mean plus

Beta-t-EGARCH(1,1) model for yVOO,t, which is motivated by likelihood-based model selection metrics

for AR(p)-normal-GARCH(1,1) specifications with p = 0, 1, 2 (Table 1(c)).

[APPROXIMATE LOCATION OF TABLE 1]

III. Score-driven models

First, the dynamic Student’s t location model, i.e. QAR(1), is given by

yGDP,t = µt + exp(λ)ϵt (1)

µt = c+ ϕµt−1 + κSµ,t−1∇µ,t−1 (2)

ϵt ∼ t(ν) i.i.d. (3)

where µt is the filtered signal of yGDP,t, exp(λ) is the constant scale parameter of the t-distribution, ∇µ,t

is the conditional score with respect to µt, and Sµ,t is the scaling parameter of the conditional score.

The parameters c, ϕ, κ, and λ are ∈ IR, and ν > 0. We assume that |ϕ| < 1 (i.e. µt is asymptotically

covariance stationary), and we initialize µt by using its unconditional mean: E(µt) = c/(1− ϕ).

The log conditional density of yGDP,t|(yGDP,1, . . . , yGDP,t−1, µ1) = yGDP,t|Ft−1 is

ln f(yGDP,t|Ft−1) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)−λ− ν + 1

2
ln

[
1 +

1

ν
×

(yGDP,t − µt)
2

exp(2λ)

]
(4)

As a function of ϵt = (yGDP,t − µt) exp(−λ), the conditional score with respect to µt is:

∇µ,t =
∂ ln f(yGDP,t|Ft−1)

∂µt
=

(ν + 1)ϵt
exp(λ)(ν + ϵ2t )

(5)

We consider the following five alternatives for the scaling parameter Sµ,t of the conditional score:

Sµ,t = (I−1)0 = 1 (6)

Sµ,t = (I−1)1(DCS) =
ν

ν + 1
exp(2λ) (Harvey 2013, p. 60) (7)
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Sµ,t = (I−1)1(GAS) =
ν + 3

ν + 1
exp(2λ) (Creal, Koopman, and Lucas 2013, p. 780) (8)

Sµ,t = (I−1)1/2(GAS) =

[
ν + 3

ν + 1
exp(2λ)

]1/2
(Creal, Koopman, and Lucas 2013, p. 780) (9)

Sµ,t = (I−1)d =

[
ν + 3

ν + 1
exp(2λ)

]d
(10)

for d > 0, where for all scaling parameters I−1 refers to the inverse of the information quantity with

respect to µt (Harvey 2013). The last alternative scaling parameter for Sµ,t is new in the literature.

Parameter d is jointly estimated with the rest of the parameters and it is identified.

Second, the Beta-t-EGARCH(1,1) model is given by

yVOO,t = c+ exp(λt)ϵt (11)

λt = ω + βλt−1 + αSλ,t−1∇λ,t−1 (12)

ϵt ∼ t(ν) i.i.d. (13)

where exp(λt) is the score-driven scale parameter of the t-distribution, ∇λ,t is the conditional score

with respect to λt, and Sλ,t is the scaling parameter of the conditional score. We initialize λt by using

parameter λ0. The parameters c, ω, β, α, and λ0 are ∈ IR, where |β| < 1 (i.e. λt is asymptotically

covariance stationary). Moreover, ν > 2, hence the conditional volatility is σt = exp(λt)[ν/(ν − 2)]1/2.

The log conditional density of yVOO,t|(yVOO,1, . . . , yVOO,t−1, λ1) = yVOO,t|Ft−1 is

ln f(yVOO,t|Ft−1) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)−λt−

ν + 1

2
ln

[
1 +

1

ν
×

(yVOO,t − c)2

exp(2λt)

]
(14)

As a function of ϵt = (yVOO,t − c) exp(−λt), the conditional score with respect to λt is:

∇λ,t =
∂ ln f(yVOO,t|Ft−1)

∂λt
=

(ν + 1)ϵ2t
ν + ϵ2t

− 1 (15)

We consider the following four alternatives for the scaling parameter Sλ,t:

Sλ,t = (I−1)0(DCS) = 1 (Harvey 2013, p. 99) (16)
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Sλ,t = (I−1)1(GAS) =
ν + 3

2ν
(Creal, Koopman, and Lucas 2013, p. 780) (17)

Sλ,t = (I−1)1/2(GAS) =

[
ν + 3

2ν

]1/2
(Creal, Koopman, and Lucas 2013, p. 780) (18)

Sλ,t = (I−1)d =

[
ν + 3

2ν

]d
(19)

for d > 0, where for all scaling parameters I−1 refers to the inverse of the information quantity with

respect to λt (Harvey 2013). The last alternative scaling parameter for Sλ,t is new in the literature.

Parameter d is jointly estimated with the rest of the parameters and it is identified.

Both models are estimated by using the maximum likelihood (ML) method (Blasques et al. 2022).

IV. Results

The ML estimates for all models are presented in Table 2. The results show that the LL estimates are

identical for all alternative choices of Sµ,t (Table 2(a)) or Sλ,t (Table 2(b)); see the κ and α parameters,

respectively, which ensure this. We also find that the filtered signal estimates, i.e. µt for QAR(1)

and λt for AR(1) plus Beta-t-EGARCH(1,1) (Figure 1), coincide for all choices of Sµ,t or Sλ,t. The

robust standard error estimates-based z-ratios of parameters which correspond to alternative choices of

Sµ,t or Sλ,t are very similar; different choices of the scaling parameter provide similarly precise filtered

signal estimates. The conclusions for QAR and Beta-t-EGARCH can be extended to the score-driven

models for which the information matrix is time-invariant (see Theorem 1 in Harvey 2013 and its

generalizations in the same work). The results of this letter answer doubts on score-driven models

that may arise from the ambiguous choice of the scaling parameters, and our results may also motivate

researchers and practitioners in economics and finance to apply score-driven models in empirical works.

[APPROXIMATE LOCATION OF TABLE 2 AND FIGURE 1]
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Table 1. Descriptive statistics.

(a) Statistics US real GDP growth VOO return

Start date 1947 Q2 September 10, 2010

End date 2019 Q4 February 9, 2022

Sample size 291 2875

Minimum −0.0263 −0.0884

Maximum 0.0385 0.0612

Average 0.0077 0.0005

Standard deviation 0.0093 0.0100

Skewness −0.0671 −0.9409

Excess kurtosis 1.6490 8.6957

(b) AR for US real GDP constant mean AR(1) AR(2)

c 0.0077∗∗∗(0.0007) 0.0050∗∗∗(0.0007) 0.0045∗∗∗(0.0007)

ϕ1 NA 0.3614∗∗∗(0.0607) 0.3184∗∗∗(0.0643)

ϕ2 NA NA 0.1113∗(0.0667)

AIC −1896.7091 −1929.2001 −1923.6559

BIC −1893.0358 −1921.8604 −1912.6566

HQC −1895.2375 −1926.2595 −1919.2486

(c) GARCH for VOO constant plus normal-GARCH(1,1) AR(1)-normal-GARCH(1,1) AR(2)-normal-GARCH(1,1)

c 0.0007∗∗∗(0.0007) 0.0007∗∗∗(0.0001) 0.0007∗∗∗(0.0001)

ϕ1 NA −0.0522∗∗(0.0209) −0.0523∗∗(0.0210)

ϕ2 NA NA −0.0176(0.0216)

ω 0.0000∗∗∗(0.0000) 0.0000∗∗∗(0.0000) 0.0000∗∗∗(0.0000)

α 0.1717∗∗∗(0.0327) 0.1722∗∗∗(0.0330) 0.1724∗∗∗(0.0331)

β 0.8040∗∗∗(0.0328) 0.8029∗∗∗(0.0332) 0.8030∗∗∗(0.0333)

AIC −19462.2993 −19459.8300 −19452.6475

BIC −19432.4803 −19424.0492 −19410.9058

HQC −19451.5503 −19446.9316 −19437.6001

Notes: United States (US); gross domestic product (GDP); autoregressive (AR); generalized AR conditional heteroskedasticity

(GARCH); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion (HQC); not available

(NA). The AR(2) model in Panel (b) is: yGDP = µt + vt = µt + σϵt; ϵt ∼ N(0, 1) i.i.d.; µt = c + ϕ1yt−1 + ϕ2yt−2 (Box and

Jenkins 1970). The AR(2)-normal-GARCH(1,1) model in Panel (c) is: yVOO = µt + vt = µt + σtϵt; ϵt ∼ N(0, 1) i.i.d.; µt =

c+ϕ1yt−1 +ϕ2yt−2; σ2
t = ω+βσ2

t−1 +αv2t−1 (Engle 1982; Bollerlev 1986). Robust standard errors, by using the heteroskedasticity

and autocorrelation consistent (HAC) (Newey and West 1987) and Huber sandwich estimators for Panels (b) and (c), respectively,

are reported in parentheses. ∗, ∗∗, and ∗∗∗ show significance at the 10%, 5%, and 1% levels, respectively.
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Table 2. Parameter estimates and model performance metrics.

(a) yGDP,t St = (I−1)0 St = (I−1)1 (DCS) St = (I−1)1 (GAS) St = (I−1)1/2 (GAS) St = (I−1)d

c 0.0038∗∗∗(0.0007) 0.0038∗∗∗(0.0007) 0.0038∗∗∗(0.0007) 0.0038∗∗∗(0.0007) 0.0038∗∗∗(0.0007)

ϕ 0.5205∗∗∗(0.0732) 0.5205∗∗∗(0.0731) 0.5205∗∗∗(0.0732) 0.5205∗∗∗(0.0731) 0.5205∗∗∗(0.0732)

κ 0.0000∗∗∗(0.0000) 0.4878∗∗∗(0.0817) 0.3253∗∗∗(0.0623) 0.0026∗∗∗(0.0005) 0.0031∗∗∗(0.0005)

λ −4.9569∗∗∗(0.0757) −4.9570∗∗∗(0.0754) −4.9570∗∗∗(0.0753) −4.9570∗∗∗(0.0752) −4.957∗∗∗(0.0752)

ν 6.0085∗∗∗(2.0944) 6.0081∗∗∗(2.0874) 6.0079∗∗∗(2.0809) 6.0080∗∗∗(2.0771) 6.0079∗∗∗(2.0769)

d NA NA NA NA 0.5189∗∗∗(0.05234)

LL 3.3655 3.3655 3.3655 3.3655 3.3655

AIC −6.6966 −6.6966 −6.6966 −6.6966 −6.6897

BIC −6.6335 −6.6335 −6.6335 −6.6335 −6.6140

HQC −6.6713 −6.6713 −6.6713 −6.6713 −6.6594

(b) yVOO,t St = (I−1)0 (DCS) St = (I−1)1 (GAS) St = (I−1)1/2 (GAS) St = (I−1)d

c 0.0009∗∗∗(0.0001) 0.0009∗∗∗(0.0001) 0.0009∗∗∗(0.0001) 0.0009∗∗∗(0.0001)

ω −0.1660∗∗∗(0.0417) −0.1660∗∗∗(0.0417) −0.1660∗∗∗(0.0417) −0.1660∗∗∗(0.0417)

α 0.0897∗∗∗(0.0105) 0.1199∗∗∗(0.0134) 0.1037∗∗∗(0.0117) 0.1071∗∗∗(0.0120)

β 0.9668∗∗∗(0.0083) 0.9668∗∗∗(0.0083) 0.9668∗∗∗(0.0083) 0.9668∗∗∗(0.0083)

ν 6.0506∗∗∗(0.6700) 6.0507∗∗∗(0.6697) 6.0507∗∗∗(0.6707) 6.0507∗∗∗(0.6731)

λ0 −4.8936∗∗∗(0.2390) −4.8937∗∗∗(0.2390) −4.8933∗∗∗(0.2389) −4.8936∗∗∗(0.2390)

d NA NA NA 0.6118∗∗∗(0.0621)

LL 3.4189 3.4189 3.4189 3.4189

AIC −6.8337 −6.8337 −6.8337 −6.8330

BIC −6.8212 −6.8212 −6.8212 −6.8184

HQC −6.8292 −6.8292 −6.8292 −6.8277

Notes: Gross domestic product (GDP); dynamic conditional score (DCS); generalized autoregressive score (GAS); log-likelihood

(LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion (HQC). The most relevant

estimates are highlighted by bold numbers. Robust standard errors, by using the Huber sandwich estimator, are in parentheses. ∗∗∗

indicates significance at the 1% level.
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(a) Quarterly US real GDP growth yGDP,t (thin line), and QAR(1) filtered signal µt for all Sµ,t (thick line)

(b) Daily VOO return yVOO,t (thick line), and c± 3σt interval (thin lines) for Beta-t-EGARCH(1,1) filtered volatility for all Sλ,t

Figure 1. US real GDP growth (from 1947 Q2 to 2019 Q4), and VOO return (from September 10, 2010 to February 9, 2022).

Notes: United States (US); gross domestic product (GDP); for VOO, c is mean return and σt = exp(λt)[ν/(ν − 2)]1/2 is volatility.
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