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March 31, 2022

Optimal Choice of the Scaling Parameters in Score-Driven Filters

Szabolcs Blazsek, Astrid Loretta Ayala & Adrian Licht

School of Business, Universidad Francisco Marroqúın, Guatemala City, Guatemala

ABSTRACT

In the literature on score-driven models, alternative choices of the scaling parameters of the condi-

tional score terms are used, but the optimal choice of those parameters is an open question. For the

score-driven models with time-invariant scaling parameters, the choice of those parameters is irrelevant

because the filters are identical for all scaling parameters. However, there are relevant score-driven

models with time-varying scaling parameters, for which score-driven scale filters appear in the infor-

mation matrix and the choice of the scaling parameters is relevant. We study this question for the

quasi-autoregressive (QAR) plus Beta-t-EGARCH (exponential generalized autoregressive conditional

heteroskedasticity) score-driven model. That model includes two score-driven filters (i.e., the location

and scale filters), for which each updating term is the product of a scaling parameter and a conditional

score. For the QAR plus Beta-t-EGARCH model, we use all alternative scaling parameters of the lit-

erature. We show for different scaling parameters in the location filter that both the location and scale

filters significantly differ and a ranking of the statistical performances of the alternative specifications

can be created. We show that the best-performing scaling parameter for the score-driven location filter

is the conditional inverse information matrix.
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1. Introduction

In the literature on score-driven models, started by the works of Creal, Koopman, and Lucas (2008)

and Harvey and Chakravarty (2008), the optimal choice of the scaling parameter of the updating term

in the score-driven filter is an open question. Different choices of the scaling parameter provide different

score-driven models (Creal, Koopman, and Lucas 2013). There are no results on the optimal choice of

the scaling parameters. For the potential users of these models this ambiguity is problematic, because

they would have to choose a certain scaling parameter. This paper is motivated by this issue.

In the work of Harvey (2013), in which the score-driven models are named dynamic conditional

score (DCS) models, the use of the following scaling parameters are suggested: (i) For the score-

driven location models, the inverse of the unconditional variance of the score I−1 ≡ [Var(∇µ,t)]
−1 is

suggested, where ∇µ,t = ∂ ln f(yt|Ft−1,Θ)/∂µt, µt is the score-driven location filter, ln f(yt|Ft−1,Θ)

is the log conditional density of the dependent variable yt, Ft−1 = σ(y1, . . . , yt−1, µ1) is the σ-algebra,

and Θ is the vector of constant parameters. This choice of scaling parameter corresponds to the inverse

information matrix of maximum likelihood (ML) estimator. (ii) For the score-driven scale models, the

use of the unit scaling parameter is suggested. For the DCS models (i) and (ii) are time-invariant.

In the work of Creal, Koopman, and Lucas (2013), in which the score-driven models are named

generalized autoregressive score (GAS) models, the use of the following scaling parameters are suggested

for all score-driven models: (i) conditional variance of the score I−1
t ≡ [Var(∇µ,t|Ft−1,Θ)]−1 scaling

parameter (I−1
t refers to the conditional inverse information matrix); (ii) Jt scaling parameter which

is defined by the decomposition I−1
t = J ′

tJt; (iii) unit scaling parameter. For (i) and (ii) the scaling

parameters are time-varying, which provides an additional flexibility for the GAS models compared to

the DCS models. We note that this additional flexibility can only be exploited for those score-driven

models in which at least one of the score-driven filters appear in I−1
t . If there are no score-driven filters

in the information matrix, then the scaling of DCS and GAS models will coincide: I−1
t = I−1.

In the empirical analysis of the present paper, we use data on daily Vanguard Standard & Poor’s

(S&P 500) exchange traded fund (ETF) return yt for the period of September 10, 2010 to February 9,

2022, for which we use what are perhaps the most popular score-driven location and score-driven scale

models. According to the time-invariant scaling parameter approach of Harvey (2013) and the time-

varying scaling parameter approach of Creal, Koopman, and Lucas (2013), we classify the score-driven

models into two groups, to compare the performances of alternative scaling parameters:

First, we start with the following two score-driven models for which the information matrix does

not depend on score-driven filters: (i) dynamic Student’s t location model (Harvey 2013), i.e., quasi-

autoregressive (QAR) model; (ii) Beta-t-EGARCH (exponential generalized autoregressive conditional

heteroskedasticity) model of conditional volatility (Harvey and Chakravarty 2008). The QAR model

provides a robust estimate of the conditional location µt of the dependent variable, and the Beta-t-

EGARCH model provides a robust estimate of the log conditional scale λt of the dependent variable.

For robustness results, we refer to the works of Creal, Koopman, and Lucas (2011, 2013), Harvey

(2013), and Blasques, Koopman, and Lucas (2015). The updating term of µt in QAR includes the

product of the scaling parameter Sµ,t and the conditional score function ∇µ,t. Similarly, the updating
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term of λt in Beta-t-EGARCH includes the product of the scaling parameter Sλ,t and the conditional

score function ∇λ,t. For each model, we consider all possible choices of Sµ,t and Sλ,t from the literature.

We find that the choices of scaling parameters Sµ,t and Sλ,t from the alternatives are not important,

because for all alternatives we get the same estimates of the filters. These results generalize to all

score-driven models, for which the scaling parameters are time-invariant.

Second, we use the QAR plus Beta-t-EGARCH model (Harvey 2013; Blazsek and Mendoza 2016),

for which Sµ,t depends on the score-driven filter λt. For the QAR plus Beta-t-EGARCH model, the

score-driven filters µt and λt are jointly estimated. We consider all possible choices of Sµ,t and Sλ,t from

the literature. We rank the models for alternative scaling parameters according to the log-likelihood

(LL). We show that for the QAR plus Beta-t-EGARCH model the choice of the scaling parameters

matters, and estimates of µt significantly differ for the alternative scaling parameter choices (likewise

for λt). In particular, we find that for different scaling parameters in the location filter, both the

location and scale filters significantly differ for the QAR plus Beta-t-EGARCH model. We find that

the choice of different scaling parameters in the scale filter is irrelevant, because all alternative scaling

parameters in the score-driven scale filter provide the same LL for a given scaling parameter in the

score-driven location filter. For the score-driven location filter, the best choice is the use of I−1
t .

The remainder of this letter is organized as follows: Section 2 presents the specifications of the

score-driven models for which the scaling parameters are time-invariant or time-varying. Section 3

describes the data and summarizes the empirical results on scaling parameters. Section 4 concludes.

2. Score-driven models

Score-driven models are observation-driven models (Cox 1981), for which the dynamic parameters

are updated by the partial derivatives of the log conditional density of the dependent variables with

respect to dynamic parameters. Some of the advantages of the score-driven models over the classical

observation-driven models are the following: (i) Score-driven models are robust to outliers and missing

data (Harvey 2013). (ii) In many cases, score-driven models are generalizations of classical observation-

driven models (Creal, Koopman, and Lucas 2013; Harvey 2013). (iii) A score-driven update locally

reduces the Kullback–Leibler divergence in expectation at every step, and only the score-driven updates

have this asymptotic property (Blasques, Koopman, and Lucas 2015). In the following, we classify

score-driven models of the present paper into two groups: (i) score-driven models with time-invariant

scaling parameters, and (ii) score-driven models with time-varying scaling parameters.

2.1. Time-invariant scaling parameters

In this section, we formulate score-driven models for which the scaling parameters are constant over

time. This involves either the use of a unit scaling parameter or the inverse information matrix. We

show that for these models the choice of the scaling parameters Sµ,t and Sλ,t is irrelevant.

First, the dynamic Student’s t location model (Harvey 2013), i.e., the QAR(1) model, is given by

yt = µt + exp(λ)ϵt (1)
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µt = c+ ϕµt−1 + κSµ,t−1∇µ,t−1 (2)

ϵt ∼ t(ν) i.i.d. (3)

where µt is the conditional location of yt, exp(λ) is the constant scale parameter of the t-distribution,

∇µ,t is the conditional score with respect to µt, and Sµ,t is the scaling parameter of the conditional score.

The parameters c, ϕ, κ, and λ are ∈ IR, and ν > 0. We assume that |ϕ| < 1 (i.e., µt is asymptotically

covariance stationary), and we initialize µt by using its unconditional mean: E(µt) = c/(1− ϕ).

The log conditional density of yt|(y1, . . . , yt−1, µ1) = yt|Ft−1 is

ln f(yt|Ft−1) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λ− ν + 1

2
ln

[
1 +

1

ν
× (yt − µt)

2

exp(2λ)

]
(4)

As a function of ϵt = (yt − µt) exp(−λ), the conditional score with respect to µt is:

∇µ,t =
∂ ln f(yt|Ft−1)

∂µt
=

(ν + 1)ϵt
exp(λ)(ν + ϵ2t )

(5)

In Figure 1(a) we present ∇µ,t as a function of ϵt, to show the nonlinear transformation of the error

term. We consider the following four alternatives for the scaling parameter Sµ,t of the conditional score:

Sµ,t = (I−1)0 = 1 (6)

Sµ,t = (I−1)1(DCS) =
ν

ν + 1
exp(2λ) (7)

Sµ,t = (I−1)1(GAS) =
ν + 3

ν + 1
exp(2λ) (8)

Sµ,t = (I−1)1/2(GAS) =

[
ν + 3

ν + 1
exp(2λ)

]1/2
(9)

where for all scaling parameters I−1 refers to the inverse of the information quantity with respect to

µt (Harvey 2013). For Equation (7) we refer to Harvey (2013, p. 60), for Equations (8) and (9) we

refer to Creal, Koopman, and Lucas (2013, p. 780). Equations (6) to (9) indicate that the information

matrix does not depend on µt for these score-driven specifications (see also Harvey 2013, Chapter 3).

Second, the Beta-t-EGARCH(1,1) model (Harvey and Chakravarty 2008) is given by

yt = µ+ exp(λt)ϵt (10)

λt = ω + βλt−1 + αSλ,t−1∇λ,t−1 (11)

ϵt ∼ t(ν) i.i.d. (12)

where exp(λt) is the score-driven scale parameter of the t-distribution, ∇λ,t is the conditional score

with respect to λt, and Sλ,t is the scaling parameter of the conditional score. We initialize λt by using

parameter λ0. The parameters µ, ω, β, α, and λ0 are ∈ IR, where |β| < 1 (i.e., λt is asymptotically
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covariance stationary). Moreover, ν > 2, hence the conditional volatility is σt = exp(λt)[ν/(ν − 2)]1/2.

The log conditional density of yt|(y1, . . . , yt−1, λ1) = yt|Ft−1 is

ln f(yt|Ft−1) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λt −

ν + 1

2
ln

[
1 +

1

ν
× (yt − µ)2

exp(2λt)

]
(13)

As a function of ϵt = (yt − µ) exp(−λt), the conditional score with respect to λt is:

∇λ,t =
∂ ln f(yt|Ft−1)

∂λt
=

(ν + 1)ϵ2t
ν + ϵ2t

− 1 (14)

In Figure 1(b) we present ∇λ,t as a function of ϵt, to show the nonlinear transformation of the error

term. We consider the following three alternatives for the scaling parameter Sλ,t:

Sλ,t = (I−1)0(DCS) = 1 (15)

Sλ,t = (I−1)1(GAS) =
ν + 3

2ν
(16)

Sλ,t = (I−1)1/2(GAS) =

[
ν + 3

2ν

]1/2
(17)

where I−1 refers to the inverse of the information quantity with respect to λt. For Equation (15) we

refer to Harvey (2013, p. 99), for Equations (16) and (17) we refer to Creal, Koopman, and Lucas

(2013, p. 780). The information matrix does not depend on λt for these score-driven specifications

(Harvey 2013, Chapter 4). Both models are estimated by using the ML method (Blasques et al. 2022).

[APPROXIMATE LOCATION OF FIGURE 1]

2.2. Time-varying scaling parameters

In this section, we formulate score-driven models for which some scaling parameters are time-varying.

This involves a transformation of the conditional variance of the score of the LL, where the variance is

conditional on Ft−1. We formulate the QAR(1) plus Beta-t-EGARCH(1,1) model as follows:

yt = µt + exp(λt)ϵt (18)

µt = c+ ϕµt−1 + κSµ,t−1∇µ,t−1 (19)

λt = ω + βλt−1 + αSλ,t−1∇λ,t−1 (20)

ϵt ∼ t(ν) i.i.d. (21)

where µt is the conditional location and exp(λt) is the score-driven scale of yt for the t-distribution.

Moreover, ∇µ,t is the conditional score with respect to µt and Sµ,t is its scaling parameter, and ∇λ,t is

the conditional score with respect to λt and Sλ,t is its scaling parameter. We initialize µt by using its

unconditional mean E(µt) = c/(1− ϕ), and we initialize λt by using parameter λ0. The parameters c,
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ϕ, κ, ω, β, α, and λ0 are ∈ IR, and ν > 2. Hence the conditional volatility is σt = exp(λt)[ν/(ν−2)]1/2.

We assume that |ϕ| < 1 and |β| < 1 (i.e., µt and λt are asymptotically covariance stationary).

The log conditional density of yt|(y1, . . . , yt−1, µ1) = yt|Ft−1 is

ln f(yt|Ft−1) = lnΓ

(
ν + 1

2

)
− ln Γ

(ν
2

)
− 1

2
ln(πν)− λt −

ν + 1

2
ln

[
1 +

1

ν
× (yt − µt)

2

exp(2λt)

]
(22)

As a function of ϵt = (yt − µt) exp(−λt), the conditional score with respect to µt is:

∇µ,t =
∂ ln f(yt|Ft−1)

∂µt
=

(ν + 1)ϵt
exp(λt)(ν + ϵ2t )

(23)

We consider the following four alternatives for the scaling parameter Sµ,t of the conditional score:

Sµ,t = (I−1
t )0 = 1 (24)

Sµ,t = (I−1
t )1(DCS) =

ν

ν + 1
exp(2λt) (25)

Sµ,t = (I−1
t )1(GAS) =

ν + 3

ν + 1
exp(2λt) (26)

Sµ,t = (I−1
t )1/2(GAS) =

[
ν + 3

ν + 1
exp(2λt)

]1/2
(27)

where I−1
t refers to the conditional variance of the score of the LL with respect to µt, and where the

variance is conditional on Ft−1 (see the work of Creal, Koopman, and Lucas 2013). As a consequence,

the scaling parameters depend on the score-driven filter λt in Equations (25) to (27).

As a function of ϵt = (yt − µt) exp(−λt), the conditional score with respect to λt is:

∇λ,t =
∂ ln f(yt|Ft−1)

∂λt
=

(ν + 1)ϵ2t
ν + ϵ2t

− 1 (28)

We consider the following three alternatives for the scaling parameter Sλ,t:

Sλ,t = (I−1
t )0(DCS) = 1 (29)

Sλ,t = (I−1
t )1(GAS) =

ν + 3

2ν
(30)

Sλ,t = (I−1
t )1/2(GAS) =

[
ν + 3

2ν

]1/2
(31)

where I−1
t refers to the conditional variance of the score of the LL with respect to λt, and where the

variance is conditional on Ft−1 (see Creal, Koopman, and Lucas 2013). We note that Sλ,t does not

depend on any of the score-driven filters. Nevertheless, this does not imply that λt is identical for all

alternatives in Equations (29) to (31), because the filters µt and λt are jointly estimated.

The model is estimated by using the ML method (Blazsek, Escribano, and Licht 2022).
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3. Empirical analysis

We model the daily return of a financial asset defined as the log percentage change in the opening price

as follows: yt = ln(pt/pt−1) for t = 1, . . . , T days. We assume that p0 is from pre-sample data. We use

data on daily Vanguard S&P 500 ETF return yt for the period of September 10, 2010 to February 9,

2022 (data source: Yahoo Finance; ticker: VOO). Variable yt is the log percentage change in the

opening price of VOO. Descriptive statistics are presented in Table 1(a). The parameter estimates

for the AR(p)-normal-GARCH(1,1) specifications with p = 0, 1, 2, which are presented in Table 1(b),

motivate the lag-order selection for the QAR(1) and Beta-t-EGARCH(1,1) models for the score-driven

specifications. In Figure 2, we present the VOO opening price and return for the sample period.

For the score-driven models for which the scaling parameters are time-invariant (Section 2.1), the

ML estimates of QAR(1) and Beta-t-EGARCH(1,1) are presented in Tables 2(a) and 2(b), respectively.

The results show that the LL estimates are identical for all alternative choices of Sµ,t or Sλ,t. We also

find that the filtered signal estimates, i.e., µt for QAR(1) and λt for Beta-t-EGARCH(1,1) coincide

for all choices of Sµ,t or Sλ,t (Figure 3). Different choices of Sµ,t and Sλ,t result in different estimates

of κ and α, respectively, which ensure exactly the same LL and the same score-driven filters. The

robust standard error-based z-ratios of parameters, which correspond to alternative choices of Sµ,t and

Sλ,t, are very similar for Table 2. Hence, different choices of the scaling parameter provide similarly

precise filtered signal estimates. The conclusions for QAR and Beta-t-EGARCH can be extended to

the score-driven models with time-invariant scaling parameters (see Theorem 1 and its generalizations

in Harvey 2013). For those models, the choice of the scaling parameters Sµ,t and Sλ,t is irrelevant.

For the score-driven models with time-varying scaling parameters (Section 2.2), the ML estimates of

QAR(1) plus Beta-t-EGARCH(1,1) are presented in Table 3. The results show that the LL estimates

differ for alternative choices of Sµ,t and Sλ,t. In the notes of Table 3, we present the ranking of

alternative specifications with respect to the LL estimates. The best-performing scaling parameter uses

Sµ,t = (I−1
t )1 and the choice of Sλ,t is irrelevant. It is noteworthy that the two alternatives Sµ,t = (I−1

t )1

(DCS) and Sµ,t = (I−1
t )1 (GAS) have identical performance. With respect to Sµ,t = (I−1

t )1, we note that

this is the choice of Harvey (2013) for the score-driven location models, and Creal, Koopman, and Lucas

(2013) present that a score-driven model with I−1
t scaling parameter encompasses a classical observation

driven model; in this case, that is the AR moving average (ARMA) model. The Sµ,t = (I−1
t )1 choice is

followed by Sµ,t = (I−1
t )0.5 and the choice of Sλ,t is also irrelevant. With respect to Sµ,t = (I−1

t )0.5, we

note that Creal, Koopman, and Lucas (2013) present that for this choice Sµ,t∇µ,t has a constant unit

variance and the statistical properties of µt are more tractable. The worst performing choice from the

scaling parameters is Sµ,t = (I−1
t )0 and the choice of Sλ,t is irrelevant, as before. The latter choice of

the scaling parameter for score-driven location filters in not common in the literature, which may be

explained by our scaling parameter selection results for QAR(1) plus Beta-t-EGARCH(1,1).

In addition, for the score-driven models with time-varying scaling parameters (Section 2.2), we

also find that the estimates of µt and λt differ for QAR(1) plus Beta-t-EGARCH(1,1) for alternative

choices of Sµ,t and Sλ,t, respectively (Figure 4). The best-performing scaling parameter Sµ,t = (I−1
t )1

corresponds to the most volatile filtered estimate of µt (i.e., the black line in Figure 4(a)). In the notes of
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Figure 4, we report robust statistical test results on the differences between two alternative µt estimates

for alternative pairs of the scaling parameters. In the same notes we report robust statistical test results

on the differences between two alternative λt estimates for alternative pairs of the scaling parameters.

To use a robust statistical test, we regress the differences on a constant using the heteroskedasticity

and autocorrelation consistent (HAC) ordinary least squares (OLS) estimator (Newey and West 1987).

We note that we prefer the comparison of the alternative µt and λt estimates to the comparison of the

LL estimates for alternative models, because µt and λt are relevant in financial applications.

In summary, for the QAR plus Beta-t-EGARCH model we find that for the score-driven location

filter the statistical performance of the scaling parameter Sµ,t = (I−1
t )1 is superior to the statistical

performances of Sµ,t = (I−1
t )0 and Sµ,t = (I−1

t )0.5. For each of those scaling parameters of the location

filter, the choice of the scaling parameter of the scale filter is irrelevant. These results validate the

main question of the present paper on the choice of the scaling parameters in score-driven filters.

[APPROXIMATE LOCATION OF TABLES 1 TO 3 AND FIGURES 2 TO 4]

4. Conclusions

We have compared the performances of score-driven models using alternative choices of the scaling

parameters in score-driven filters from the literature. We have obtained two main results:

(i) For score-driven models with time-invariant scaling parameters, we have shown for all alternative

scaling parameters of the literature that the choice of the scaling parameters is irrelevant. We have

shown this result for separately estimated QAR(1) and Beta-t-EGARCH(1,1) models by using daily

VOO return data for the period of September 10, 2010 to February 9, 2022.

(ii) For score-driven models with time-varying scaling parameters, we have also shown for all al-

ternative scaling parameters of the literature that the choice of the scaling parameters is relevant.

We have shown this result for the QAR(1) plus Beta-t-EGARCH(1,1) model, for which the scaling

parameters are time-varying, by using the same VOO dataset. For different scaling parameters in the

location filter, we have shown that both the location and scale filters differ significantly and we have

ranked the statistical performances of alternative QAR plus Beta-t-EGARCH specifications. For the

score-driven location filter, we have found that the best choice is the use of the conditional inverse

information matrix for the scaling parameter. Our results on the scaling parameters can be extended

to more general score-driven models in which the conditional information matrix depends on more than

one score-driven filters, motivating future work.
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Table 1. Descriptive statistics.

(a). Statistics VOO return

Start date September 10, 2010

End date February 9, 2022

Sample size 2, 875

Minimum −0.0884

Maximum 0.0612

Average 0.0005

Standard deviation 0.0100

Skewness −0.9409

Excess kurtosis 8.6957

(b). GARCH for VOO constant plus normal-GARCH(1,1) AR(1)-normal-GARCH(1,1) AR(2)-normal-GARCH(1,1)

c 0.0007∗∗∗(0.0007) 0.0007∗∗∗(0.0001) 0.0007∗∗∗(0.0001)

ϕ1 NA −0.0522∗∗(0.0209) −0.0523∗∗(0.0210)

ϕ2 NA NA −0.0176(0.0216)

ω 0.0000∗∗∗(0.0000) 0.0000∗∗∗(0.0000) 0.0000∗∗∗(0.0000)

α 0.1717∗∗∗(0.0327) 0.1722∗∗∗(0.0330) 0.1724∗∗∗(0.0331)

β 0.8040∗∗∗(0.0328) 0.8029∗∗∗(0.0332) 0.8030∗∗∗(0.0333)

Notes: Autoregressive (AR); generalized AR conditional heteroskedasticity (GARCH); not available (NA). The most general AR(2)-

normal-GARCH(1,1) model in Panel (b) is: yVOO = µt + vt = µt + σtϵt; ϵt ∼ N(0, 1) i.i.d.; µt = c + ϕ1yt−1 + ϕ2yt−2; σ2
t =

ω + βσ2
t−1 + αv2t−1 (Box and Jenkins 1970; Engle 1982; Bollerlev 1986). Robust standard errors, by using the Huber sandwich

estimator, are reported in parentheses. ∗∗ and ∗∗∗ indicate significance at the 5% and 1% levels, respectively.
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Table 2. Parameter estimates for score-driven models with time-invariant scaling parameters.

(a). QAR(1) Sµ,t = (I−1)0 Sµ,t = (I−1)1 (DCS) Sµ,t = (I−1)1 (GAS) Sµ,t = (I−1)1/2 (GAS)

c 0.0012∗∗∗(0.0003) 0.0012∗∗∗(0.0003) 0.0012∗∗∗(0.0003) 0.0012∗∗∗(0.0003)

ϕ −0.1648(0.3050) −0.1648(0.3049) −0.1648(0.3048) −0.1648(0.3044)

κ −0.0000∗∗(0.0000) −0.0947∗∗(0.0461) −0.0460∗∗(0.0224) −0.0003∗∗(0.0002)

λ −5.1101∗∗∗(0.0267) −5.1101∗∗∗(0.0267) −5.1101∗∗∗(0.0267) −5.1101∗∗∗(0.0267)

ν 2.8397∗∗∗(0.1695) 2.8396∗∗∗(0.1693) 2.8396∗∗∗(0.1693) 2.8397∗∗∗(0.1693)

LL 3.3157 3.3157 3.3157 3.3157

AIC −6.6280 −6.6280 −6.6280 −6.6280

BIC −6.6176 −6.6176 −6.6176 −6.6176

HQC −6.6243 −6.6243 −6.6243 −6.6243

(b). Beta-t-EGARCH(1,1) Sλ,t = (I−1)0 (DCS) Sλ,t = (I−1)1 (GAS) Sλ,t = (I−1)1/2 (GAS)

µ 0.0009∗∗∗(0.0001) 0.0009∗∗∗(0.0001) 0.0009∗∗∗(0.0001)

ω −0.1660∗∗∗(0.0417) −0.1660∗∗∗(0.0417) −0.1660∗∗∗(0.0417)

α 0.0897∗∗∗(0.0105) 0.1199∗∗∗(0.0134) 0.1037∗∗∗(0.0117)

β 0.9668∗∗∗(0.0083) 0.9668∗∗∗(0.0083) 0.9668∗∗∗(0.0083)

ν 6.0506∗∗∗(0.6700) 6.0507∗∗∗(0.6697) 6.0507∗∗∗(0.6707)

λ0 −4.8936∗∗∗(0.2390) −4.8937∗∗∗(0.2390) −4.8933∗∗∗(0.2389)

LL 3.4189 3.4189 3.4189

AIC −6.8337 −6.8337 −6.8337

BIC −6.8212 −6.8212 −6.8212

HQC −6.8292 −6.8292 −6.8292

Notes: Dynamic conditional score (DCS); generalized autoregressive score (GAS); log-likelihood (LL); Akaike information criterion

(AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion (HQC). The most relevant estimates are highlighted by bold

numbers. Robust standard errors, by using the Huber sandwich estimator, are in parentheses. ∗∗ and ∗∗∗ indicate significance at

the 5% and 1% levels, respectively.
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Table 3. Parameter estimates for score-driven models with time-varying scaling parameters.

(a). QAR(1) plus Sµ,t = (I−1)0 Sµ,t = (I−1)1 (DCS) Sµ,t = (I−1)1 (GAS) Sµ,t = (I−1)1/2 (GAS)

Beta-t-EGARCH(1,1) Sλ,t = (I−1)0 (DCS) Sλ,t = (I−1)0 (DCS) Sλ,t = (I−1)0 (DCS) Sλ,t = (I−1)0 (DCS)

c 0.0001∗(0.0001) 0.0001∗∗∗(0.0000) 0.0001∗∗∗(0.0000) 0.0001∗∗(0.0000)

ϕ 0.8962∗∗∗(0.0606) 0.9115∗∗∗(0.0343) 0.9115∗∗∗(0.0343) 0.9055∗∗∗(0.0399)

κ 0.0000∗∗∗(0.0000) −0.0445∗∗∗(0.0138) −0.0302∗∗∗(0.0093) −0.0002∗∗∗(0.0001)

ω −0.1670∗∗∗(0.0338) −0.1595∗∗∗(0.0331) −0.1595∗∗∗(0.0331) −0.1625∗∗∗(0.0334)

α 0.0886∗∗∗(0.0079) 0.0884∗∗∗(0.0078) 0.0884∗∗∗(0.0078) 0.0891∗∗∗(0.0079)

β 0.9666∗∗∗(0.0067) 0.9680∗∗∗(0.0066) 0.968∗∗∗(0.0066) 0.9675∗∗∗(0.0066)

ν 6.0920∗∗∗(0.5888) 6.3166∗∗∗(0.6113) 6.3166∗∗∗(0.6113) 6.1848∗∗∗(0.6025)

λ0 −0.1642∗∗∗(0.0411) −0.1569∗∗∗(0.0399) −0.1569∗∗∗(0.04) −0.1599∗∗∗(0.0405)

LL 3.4205 3.4215 3.4215 3 .4214

AIC −6.8355 −6.8375 −6.8375 −6.8372

BIC −6.8189 −6.8209 −6.8209 −6.8206

HQC −6.8295 −6.8315 −6.8315 −6.8312

(b). QAR(1) plus Sµ,t = (I−1)0 Sµ,t = (I−1)1 (DCS) Sµ,t = (I−1)1 (GAS) Sµ,t = (I−1)1/2 (GAS)

Beta-t-EGARCH(1,1) Sλ,t = (I−1)1 (GAS) Sλ,t = (I−1)1 (GAS) Sλ,t = (I−1)1 (GAS) Sλ,t = (I−1)1 (GAS)

c 0.0001∗(0.0001) 0.0001∗∗∗(0.0000) 0.0001∗∗∗(0.0000) 0.0001∗∗(0.0000)

ϕ 0.8966∗∗∗(0.0602) 0.9115∗∗∗(0.0343) 0.9115∗∗∗(0.0343) 0.9055∗∗∗(0.0399)

κ 0.0000∗∗∗(0.0000) −0.0445∗∗∗(0.0138) −0.0302∗∗∗(0.0093) −0.0002∗∗∗(0.0001)

ω −0.1671∗∗∗(0.0338) −0.1595∗∗∗(0.0331) −0.1595∗∗∗(0.0331) −0.1625∗∗∗(0.0334)

α 0.1188∗∗∗(0.0100) 0.1199∗∗∗(0.0100) 0.1199∗∗∗(0.01) 0.1200∗∗∗(0.0101)

β 0.9666∗∗∗(0.0067) 0.9680∗∗∗(0.0066) 0.968∗∗∗(0.0066) 0.9675∗∗∗(0.0066)

ν 6.0905∗∗∗(0.5884) 6.3167∗∗∗(0.6113) 6.3166∗∗∗(0.6113) 6.1848∗∗∗(0.6025)

λ0 −0.1643∗∗∗(0.0411) −0.1569∗∗∗(0.0400) −0.1569∗∗∗(0.04) −0.1599∗∗∗(0.0405)

LL 3.4205 3.4215 3.4215 3 .4214

AIC −6.8355 −6.8375 −6.8375 −6.8372

BIC −6.8189 −6.8209 −6.8209 −6.8206

HQC −6.8295 −6.8315 −6.8315 −6.8312

(c). QAR(1) plus Sµ,t = (I−1)0 Sµ,t = (I−1)1 (DCS) Sµ,t = (I−1)1 (GAS) Sµ,t = (I−1)1/2 (GAS)

Beta-t-EGARCH(1,1) Sλ,t = (I−1)1/2 (GAS) Sλ,t = (I−1)1/2 (GAS) Sλ,t = (I−1)1/2 (GAS) Sλ,t = (I−1)1/2 (GAS)

c 0.0001∗(0.0001) 0.0001∗∗∗(0.0000) 0.0001∗∗∗(0.0000) 0.0001∗∗(0.0000)

ϕ 0.8962∗∗∗(0.0606) 0.9115∗∗∗(0.0343) 0.9115∗∗∗(0.0343) 0.9055∗∗∗(0.0399)

κ 0.0000∗∗∗(0.0000) −0.0445∗∗∗(0.0138) −0.0302∗∗∗(0.0093) −0.0002∗∗∗(0.0001)

ω −0.1670∗∗∗(0.0338) −0.1595∗∗∗(0.0331) −0.1595∗∗∗(0.0331) −0.1625∗∗∗(0.0334)

α 0.1026∗∗∗(0.0087) 0.1029∗∗∗(0.0087) 0.1029∗∗∗(0.0087) 0.1034∗∗∗(0.0088)

β 0.9666∗∗∗(0.0067) 0.9680∗∗∗(0.0066) 0.968∗∗∗(0.0066) 0.9675∗∗∗(0.0066)

ν 6.0921∗∗∗(0.5888) 6.3166∗∗∗(0.6113) 6.3166∗∗∗(0.6113) 6.1849∗∗∗(0.6025)

λ0 −0.1642∗∗∗(0.0411) −0.1569∗∗∗(0.0400) −0.1569∗∗∗(0.04) −0.1599∗∗∗(0.0405)

LL 3.4205 3.4215 3.4215 3 .4214

AIC −6.8355 −6.8375 −6.8375 −6.8372

BIC −6.8189 −6.8209 −6.8209 −6.8206

HQC −6.8295 −6.8315 −6.8315 −6.8312

Notes: Dynamic conditional score (DCS); generalized autoregressive score (GAS); log-likelihood (LL); Akaike information criterion

(AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion (HQC). Ranking of LL: 1-bold, 2-italic, and 3-normal. Robust

standard errors (Huber) are in parentheses. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.
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(a). ∇µ,t as a function of ϵt (Equation (5)).

(b). ∇λ,t as a function of ϵt (Equation (14)).

Figure 1. Conditional scores with respect to µt and λt. Notes: We use the estimates of ν, and we assume that λ = 0 for Panel (a).
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(a). Daily VOO opening price pt.

(b). Daily VOO return yt = ln(pt/pt−1).

Figure 2. VOO opening price and return for the period of September 10, 2010 to February 9, 2022.
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(a). µt estimates for the QAR(1) model for all alternatives of Sµ,t.

(b). λt estimates for the Beta-t-EGARCH(1,1) model for all alternatives of Sλ,t.

Figure 3. Estimates µt and λt for score-driven models with time-invariant scaling parameters. Notes: We present all the estimates

of µt which coincide for all alternatives of Sµ,t. We present all the estimates of λt which coincide for all alternatives of Sλ,t.
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(a). µt estimates for the QAR(1) plus Beta-t-EGARCH(1,1) model for all alternatives of Sµ,t and Sλ,t.

(b). λt estimates for the QAR(1) plus Beta-t-EGARCH(1,1) model for all alternatives of Sµ,t and Sλ,t.

Figure 4. Estimates µt and λt for score-driven models with with time-varying scaling parameters. Notes: The black line represents

all µt and λt for which Sµ,t = (I−1
t )1 (DCS) (Equation (25)) or Sµ,t = (I−1

t )1 (GAS) (Equation (26)) and any choice of Sλ,t

(Equations (29) to (31)). The blue line represents all µt and λt for which Sµ,t = (I−1
t )0.5 (GAS) (Equation (27)) and any choice of

Sλ,t (Equations (29) to (31)). The red line represents all µt and λt for which Sµ,t = (I−1
t )0 (DCS) (Equation (24)) and any choice

of Sλ,t (Equations (29) to (31)). Ranking according to LL estimates: 1-black, 2-blue, and 3-red. Robust tests statistic (p-value in

parentheses) of the difference between µt for black and blue: 2.0309∗∗(0.0424). Robust tests statistic (p-value in parentheses) of the

difference between µt for black and red: 1.5040+(0.1327). Robust tests statistic (p-value in parentheses) of the difference between

λt for black and blue: 9.2621∗∗∗(0.0000). Robust tests statistic (p-value in parentheses) of the difference between λt for black and

red: 8.4833∗∗∗(0.0000). +, ∗∗, and ∗∗∗ denotes significance at the 15%, 5%, and 1% levels, respectively.
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