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Motivation

The objective of this paper is to suggest new models of conditional 
volatility of portfolio returns. 

Conditional volatility is average gain or loss for the next period 
given all the information that is available to the investor. 

Gain or loss is measured in % change from current value. 

This is interesting for investors, because a good forecasting model of 
volatility can provide estimates of potential gains or losses on the 
investment. Thus, volatility is a measure of financial risk. 

Classical risk management metrics of banks, such as value-at-risk or 
expected shortfall can be estimated by using volatility models. 
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Motivation

Models of conditional volatility are very popular in practice, 
because volatility to some extent is predictable. 

In other words, the risk of an investment to some extent is 
predictable (it is much more predictable than  financial return).

To what extent? Well, this, at least partly, depends on the 
correct choice of the volatility model.

The body of literature on conditional volatility models is very 
extensive. Our objective is to contribute to that literature.
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Portfolio return time series 

In all models, we use data on the evolution of return that is 
obtained on changes in the value of a portfolio ��, for consecutive 
time periods � = 1, … , �. 

In practice, two types of returns are used alternatively:

Standard return:

	
� = (�� − ���)/��� for � = 1, … , � days, weeks or months.

Log-return (we use this in our paper):

	� = ln (��/���) for � = 1, … , � days, weeks or months.
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Data
We use daily data on the S&P 500 index for the period of 1950 
to 2017 (source: Bloomberg).
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Data

From the latter figure:

Notice the predictability of absolute return.

Notice also the large number of extreme observations.
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Robert Engle (1982, Econometrica)
Nobel Prize in Economics, 2003
	� = �� + �� (expected return �� plus unexpected return ��)

�� can be modeled as a constant parameter, or it can also include past 
values of 	� or other explanatory variables.

��|(	�, … , 	��)~�(0, λ�)

λ� = �� + �����
� + ⋯ + � �� 

�

This is the ARCH(!) model (autoregressive conditional 
heteroscedasticity, ARCH).

λ� is the conditional standard deviation of unexpected return, which 
is also named conditional volatility.
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ARCH(1) where � , denoted “const”
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ARCH(2) where �
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ARCH(3) where �
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ARCH(4) where �
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ARCH – some conclusions

The results for ARCH(1) to ARCH(4) show that the model 
improves when more lags of ��

� are included in the conditional 
variance equation. 

This is based on the AIC, BIC (Schwarz) and HQC metrics, which 
measure model parsimoniousness (i.e. model fit to data that is 
penalized by the number of estimated parameters).

We could continue including more and more lags in order to 
improve the model, but this would result in a large number of 
estimated parameters. This causes imprecision of the estimates. 
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A possible solution:A possible solution:A possible solution:A possible solution:
Tim Bollerslev (1986, Journal of Econometrics)

	� = �� + �� (expected return �� plus unexpected return ��)

�� can be modeled as a constant parameter or it can also include 
past values of 	� or other explanatory variables.

��|(	�, … , 	��)~�(0, λ�)

λ� = �� + �����
� + ⋯ + � �� 

� + "�λ�� + ⋯ + "#λ�#

This is the GARCH($, !) model (generalized ARCH, GARCH).

λ� is the conditional standard deviation of unexpected return, 
which is also named conditional volatility.
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GARCH(1,1)

In the literature, several papers show that the volatility forecast 
performance of GARCH(1,1) is very difficult to beat with other 
volatility models. 

For example, Lunde and Hansen (2005, Journal of Applied 
Econometrics): “A Forecast Comparison of Volatility Models: 
Does Anything Beat a GARCH(1,1)?”
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GARCH(1,1)
	� = �� + �� (expected return �� plus unexpected return ��)

�� can be modeled as a constant parameter or it can also include 
past values of 	� or other explanatory variables.

��|(	�, … , 	��)~�(0, λ�)

λ� = �� + �����
� + "�λ��

This is the GARCH(%, %) model.

λ� is the conditional standard deviation of unexpected return, 
which is also named conditional volatility.
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GARCH(1,1) where �

(C) AYALA, BLAZSEK AND ESCRIBANO (2019) 18



GARCH(1,1) – some conclusions

Notice that AIC, BIC (Schwarz) and HQC metrics improve with respect 
to all ARCH estimates (i.e. ARCH(1) to ARCH(4)).

The annualized expected return estimate is 252 x 0.000486=12.25%

We present the evolution of GARCH(1,1) conditional volatility of S&P 
500 returns:
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#1 Extensions of ARCH and GARCH

Bollerslev (1987, Review of Economics and Statistics):

t-GARCH model. 

The error term has the Student’s t-distribution. 

The degrees of freedom parameter of the Student’s t-
distribution is jointly estimated with other parameters.

In this way the model is robust to extreme observations.
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#1 Extensions of ARCH and GARCH
	� = �� + �� (expected return �� plus unexpected return ��)

�� can be modeled as a constant parameter or it can also include 
past values of 	� or other explanatory variables.

��|(	�, … , 	��)~�(0, λ� , ν)

λ� = ' + �����
� + "�λ��

This is the t-GARCH(%, %) model.

λ�ν/(ν − 2) is the conditional standard deviation of unexpected 
return, which is also named conditional volatility.
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#1 Extensions of ARCH and GARCH

Bollerslev (1987, Review of Economics and Statistics):

t-GARCH model. 

In this model two parameters influence volatility:

(1) The time-varying λ� (higher λ� � higher volatility).

(2) The constant degrees of freedom parameter ν (lower ν �

higher volatility). 

Changes in ν control extreme risk!
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t-GARCH(1,1) where �

(C) AYALA, BLAZSEK AND ESCRIBANO (2019) 24



t-GARCH(1,1) – some conclusions

Notice that model performance improves with respect to 
GARCH(1,1), based on the AIC, BIC (Schwarz) and HQC metrics.

The degrees of freedom parameter estimate is 6.56.

N(0,1) is a special case of the Student’s t distribution for infinite 
degrees of freedom. In practice, if the degrees of freedom is 
higher than 30, then the two distributions coincide.

It is much lower than 30 for our degrees of freedom estimate 
(hence, the improved model performance). 
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#2a Extensions of ARCH and GARCH

Glosten, Jagannathan and Runkle (1993, Journal of Finance):
GARCH with leverage effects. For GARCH(1,1):

	� = �� + �� (expected return �� plus unexpected return ��)

��|(	�, … , 	��)~�(0, λ�)

λ� = ' + �����
� + "�λ�� + )�1(��� < 0)���

�

where 1(·) is the indicator function (i.e. it takes the value 1 if 
the argument is true). This model introduces asymmetry into λ�.
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#2b Extensions of ARCH and GARCH

t-GARCH with leverage effects. For GARCH(1,1):

	� = �� + �� (expected return �� plus unexpected return ��)

��|(	�, … , 	��)~�(0, λ� , ν)

λ� = ' + �����
� + "�λ�� + )�1(��� < 0)���

�

where 1(·) is the indicator function (i.e. it takes the value 1 if 
the argument is true). 

This model also uses asymmetry in λ�.
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t-GARCH(1,1) 

with leverage 

effects
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t-GARCH(1,1) with leverage effects –
some conclusions

Notice that the model performance improves with respect to t-
GARCH(1,1), based on the AIC, BIC (Schwarz) and HQC metrics.

The leverage effects parameter is significantly different from 
zero (hence, the improvement).

The leverage effects parameter is positive. This means that if we 
have a negative unexpected return on the previous day, then the 
risk of the portfolio increases. Explanation: If the value of the 
equity falls, then the debt to equity ratio (i.e. leverage) of the 
firm increases. Hence, the risk of the shareholders increases.
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#3 Extensions of ARCH and GARCH

Harvey, Ruiz and Shephard (1994, The Review of Economic Studies): 
stochastic volatility model. 

	� = �� + �� = �� + exp (λ�)/� where /�~�(0, 01
�) i.i.d.

λ� = ' + "�λ�� + ��2� where 2�~�(0, 03
�) i.i.d.

This model is estimated by using the Kalman filter (Kalman 1960).

More recent stochastic volatility models include leverage effects, and 
consider other distributions for the error term than the normal 
distribution (more complicated, simulation-based estimation).
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Some conclusions from previous models

The previous extensions are effective, because they are robust 
to extreme observations (i.e. Student’s t-distribution) and they 
also incorporate the possibility of asymmetries in volatility.

Nevertheless, for ARCH and GARCH models, volatility is updated 
by lags of the squared unexpected return, i.e. ���

� , … , ��
�.

This means that if in the previous period we have a large price 
fall (e.g. a stock market crash), then volatility may be 
overestimated for the days following the crash.

See the following estimate for GARCH(1,1): 
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Conclusions from the figure

Clearly, the GARCH(1,1) model overestimates volatility for the 
period after the stock market crash: 

Volatility is average price change, but the figure shows that the 
mean +/- volatility lines clearly bound the realized returns on 
the S&P 500. 

This is due to the property of GARCH that is uses squared 
unexpected returns to update the variance equation.

Why not to use an alternative function to the square function?
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#4 Extensions of ARCH and GARCH

Harvey and Chakravarty (2008, University of Cambridge WP), 
Beta-t-EGARCH model: 

	� = �� + �� = �� + exp (λ�)/� where /�~�(ν) i.i.d.

λ� = ' + "�λ�� + ��2�� (leverage effects can be included)

2� =
(45�)67

8

4 9:; �<7 567
8 − 1

Compared to GARCH(1,1), the ���
� updating term is replaced by 

2��, which is a nonlinear transformation of ���
� . 
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Some conclusions on Beta-t-EGARCH
The updating term for Beta-t-EGARCH discounts extreme 
observations when volatility is updated.

The degree of discounting is estimated for the data. It is directly 
related to the degrees of freedom parameter. If the degrees of 
freedom parameter goes to infinity then the 2� converges to a 
quadratic function of ��, i.e. the GARCH-type update.
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Several studies show that Several studies show that Several studies show that Several studies show that BetaBetaBetaBeta----tttt----EGARCH EGARCH EGARCH EGARCH is superior to is superior to is superior to is superior to GARCH:GARCH:GARCH:GARCH:

Blazsek and Villatoro (2015, Applied Economics)

Blazsek, Chavez and Mendez (2016, Applied Economics Letters)

Blazsek and Mendoza (2016, Applied Economics)

Blazsek and Monteros (2017a, Applied Economics)

Blazsek, Carrizo, Eskildsen and Gonzalez (2018, Finance Research Letters)

Blazsek and Hernandez (2018, Empirical Economics)

Blazsek and Licht (2018, Financial Statistical Journal)

Ayala and Blazsek (2018a and 2019, both in Applied Economics)
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Extensions of Beta-t-EGARCH

#1 Use other distributions for the error term (other than the 
Student’s t-distribution):

Ayala and Blazsek (2018b Applied Economics; 2018c The 
European Journal of Finance)

#2 Use Markov-switching (MS) dynamics for model parameters:

Blazsek and Ho (2017, Applied Economics): MS-Beta-t-EGARCH

Blazsek, Ho and Liu (2018, Applied Economics): MS-EGARCH for 
Skew-Gen-t, NIG and EGB2 distributions.
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Extensions of Beta-t-EGARCH

#3 Use time-varying shape parameters in addition to the time-
varying scale parameters: 

Blazsek and Monteros (2017b, Applied Economics): Beta-t-
EGARCH with time-varying degrees of freedom parameter.

Ayala, Blazsek and Escribano (2016, the present paper):

Skew-Gen-t-EGARCH, NIG-EGARCH and EGB2-EGARCH with 
time-varying shape parameters.
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BetaBetaBetaBeta----tttt----EGARCH with timeEGARCH with timeEGARCH with timeEGARCH with time----varying degrees of varying degrees of varying degrees of varying degrees of 
freedom; freedom; freedom; freedom; Blazsek and Monteros (2017b)

	� = �� + �� = �� + exp	�λ��/� where /�~��ν��

λ� � ' � "�λ�� � ��2<,��

ν� � = � >ν�� � κ24,��
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Ayala, Blazsek and Escribano (2019)
EGARCH with several dynamic shape parametersEGARCH with several dynamic shape parametersEGARCH with several dynamic shape parametersEGARCH with several dynamic shape parameters

The latter equation is for the k-th shape parameter of /�.
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Ayala, Blazsek and Escribano (2019)

Alternatives for the error term:

EGB2 (exponential generalized beta of the second kind): 

2 shape parameters (skewness, tail thickness)

NIG (normal-inverse Gaussian): 

2 shape parameters (skewness, tail thickness)

Skew-Gen-t (skewed generalized t): 

3 shape parameters (skewness, peakedness, tail thickness)
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Time-varying parameter that drives the degrees of freedom 

parameter for the Skew-Gen-t-EGARCH model.
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Thank you for your attention.Thank you for your attention.Thank you for your attention.Thank you for your attention.
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