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Motivation

The objective of this paper is to suggest new models of conditional
volatility of portfolio returns.

Conditional volatility is average gain or loss for the next period
given all the information that is available to the investor.

Gain or loss is measured in % change from current value.

This is interesting for investors, because a good forecasting model of
volatility can provide estimates of potential gains or losses on the
investment. Thus, volatility is a measure of financial risk.

Classical risk management metrics of banks, such as value-at-risk or
expected shortfall can be estimated by using volatility models.

(C) AYALA, BLAZSEK AND ESCRIBANO (2019) 2



Motivation

Models of conditional volatility are very popular in practice,
because volatility to some extent is predictable.

In other words, the risk of an investment to some extent is
predictable (it is much more predictable than financial return).

To what extent? Well, this, at least partly, depends on the
correct choice of the volatility model.

The body of literature on conditional volatility models is very
extensive. Our objective is to contribute to that literature.
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Portfolio return time series

In all models, we use data on the evolution of return that is
obtained on changes in the value of a portfolio p;, for consecutive
time periodst =1, ...,T.

In practice, two types of returns are used alternatively:

Standard return:
Ve = (Py — Pr—1)/Ppe—q fort =1, ..., T days, weeks or months.

Log-return (we use this in our paper):

v = In(py/ps—q1) fort = 1, ..., T days, weeks or months.




Data

We use daily data on the S&P 500 index for the period of 1950
to 2017 (source: Bloomberg).

Start date 4-Jan-1950
End date 30-Dec-2017
Sample size T 17,109
Minimum —0.2290
Maximum 0.1096
Mean 0.0003
Standard deviation 0.0096
Skewness —1.0162
Excess kurtosis 27.4010
Corr(yt,yt—1) 0.0269

Corr(ytg, Yt—1) —0.0877
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return on the S&P 500
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Absolute value of daily log-return on the S&P 500
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Data

From the latter figure:
Notice the predictability of absolute return.
Notice also the large number of extreme observations.
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Robert Engle (1982, Econometrica)
Nobel Prize in Economics, 2003

Ve = Uy + V¢ (expected return u; plus unexpected return v;)

Uy can be modeled as a constant parameter, or it can also include past
values of y; or other explanatory variables.

Ve| (V1) oo Ye-1)~N(0, A¢)
A =g+ avi g+ aguiy

This is the ARCH(q) model (autoregressive conditional
heteroscedasticity, ARCH).

\/A¢ is the conditional standard deviation of unexpected return, which
is also named conditional volatility.




ARCH(1) where u; = ¢, denoted “const”

Model 1: GARCH, using observations 1950-01-04:2017-12-29 (T = 17109)
Dependent variable: logreturn

Standard errors based on Hessian

coefficient std. error g p-value

const 0.000434670 6.62049%e-05 6.566 5.19e-011 ***

alpha (0) 6.35423e-05 9.22820e-07 68.86 0.0000 Lt
alpha (1) 0821135 0.0146128 J 5 UL 1.96e-107 ***

Mean dependent var 0. 000297 S.D. dependent var 0.009645
Log-likelihood 56226.17 Akaike criterion -112444.3
Schwarz criterion -112413.3 Hannan-Quinn -112434.1

Unconditional error variance = 9.36836e-005
Likelihood ratio test for (G)ARCH terms:

- Chi-square(l) = 2188.72 [0] —



ARCH(2) where u; = ¢

Model 2: GARCH, using observations 1950-01-04:2017-12-29 (T = 17109)
Dependent wvariable: logreturn
Standard errors based on Hessian

coefficient std. error = p-value
censt 0.000494118 6.07700e-05 P 4.26e-016 ***
alpha (0) 4.62756e-05 8.33039%9e-07 58 .88 0.0000 * ek
alpha (1) 0239235 0.0127299 18.79 B.58=—=079 %¥=
alpha (2) 0259999 0.01212659 21.44 5.69e-102 ***

Mean dependent var 0.000297 S.D. dependent var 0.009645

Log—-likelihood 57034.56 Akaike criterion -114059.1
Schwarz criterion -114020.4 Hannan—-Quinn -114046.4
Unconditional error variance = 9.24098e-005

Likelihood ratio test for (G)ARCH terms:

Chi-square(2) = 3805.51 [0]



ARCH(3) where u; = ¢

Model 3: GARCH, using observations 1950-01-04:2017-12-29 (T = 171009)
Dependent variable: logreturn
Standard errors based on Hessian
coefficient std. error Z p-value
const 0.000510695 5.77511e-05 8.843 9.32e-019 **x*
alpha (0) 3.69428e-05 8.11247e-07 45.54 0.0000 * ok K
alpha (1) 0.185940 0.0116426 15.97 2.05e-057 **=*
alpha (2) 0.227164 0.0114888 19.77 5.12e-087 ***
alpha (3) 0.199721 0.0119364 16.73 7.65e-063 ***

Mean dependent var 0.000297 S.D. dependent var 0.009645

Log-likelihood 57388.70 Akaike criterion -114765.4
Schwarz criterion -114718.9 Hannan—-Quinn -114750.1
Unconditional error variance = 9.54162e-005

Likelihood ratio test for (G)ARCH terms:
Chi-square (3) = 4513.77 [0]




ARCH(4) where u; = ¢

Model 4: GARCH, using observations 1950-01-04:2017-12-29 (T = 17109)
Dependent variable: logreturn

Standard errors based on Hessian

coefficient std. error z p-value
aonst 0.000550461 5.60966e-05 9.813 9.92e—-023 **x*
alpha (0) 3.01933e-05 1 =89738e=07 aE. 23 0.0000 e
alpha (1) 0.15Z501 0.0104929 14.53 7.40e—-048 ***
alpha (2) 0.177079 0.0107689 16.44 9. 33e—=0p1 o
alpha (3) 0.177680 0.0111533 15.93 3.88e—-057 ***
alpha (4) 0.179349 0.0107605 16.67 2.26e-062 ***

Mean dependent var 0.000297 S.D. dependent var 0.009645

Log-likelihood 57714.58 Akaike criterion -115415.2
Schwarz criterion -115360.9 Hannan-Quinn -115397.3
Unconditional error variance = 9.63438e-005

Likelihood ratio test for (G)ARCH terms:
Chi-sguare(4) = 5165.55 [0]




ARCH — some conclusions

The results for ARCH(1) to ARCH(4) show that the model

improves when more lags of vZ are included in the conditional
variance equation.

This is based on the AIC, BIC (Schwarz) and HQC metrics, which
measure model parsimoniousness (i.e. model fit to data that is
penalized by the number of estimated parameters).

We could continue including more and more lags in order to
improve the model, but this would result in a large number of
estimated parameters. This causes imprecision of the estimates.
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A possible solution:
Tim Bollerslev (1986, Journal of Econometrics)

Ye = U + V¢ (expected return p, plus unexpected return v,)

Uy can be modeled as a constant parameter or it can also include
past values of y; or other explanatory variables.

Ve| (V1) s Ve—1)~N (0, A¢)
At = o + alvg_l + -+ aqvf_q + :81)\1,“—1 + -4+ ,Bpkt_p
This is the GARCH(p, q) model (generalized ARCH, GARCH).

\/A; is the conditional standard deviation of unexpected return,
which is also named conditional volatility.

AND ESCRIBANO (2019)



GARCH(1,1)

In the literature, several papers show that the volatility forecast
performance of GARCH(1,1) is very difficult to beat with other
volatility models.

For example, Lunde and Hansen (2005, Journal of Applied
Econometrics): “A Forecast Comparison of Volatility Models:
Does Anything Beat a GARCH(1,1)?”




GARCH(1,1)

Ye = U + V¢ (expected return p, plus unexpected return v,)

Uy can be modeled as a constant parameter or it can also include
past values of y; or other explanatory variables.

Ve| (V1) oo Ye—1)~N(0, )
At = o+ ayvfq + Biiq
This is the GARCH(1, 1) model.

\/A; is the conditional standard deviation of unexpected return,
which is also named conditional volatility.
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GARCH(1,1) where u; = ¢

Model 6: GARCH, using observations 1950-01-04:2017-12-29 (T = 17109)
Dependent variable: logreturn

Standard errors based on Hessian

coefficient std. error Z p-value
const 0.000486014 5.33283e-05 9.114 1 -8Te—0Z20 "tk
alpha (0) 9.00512e-07 1.06911e-07 8.423 3.67e—01L7 *x*
alpha (1) 0.0841087 0.00447230 18.81 6.6G7Te—0779 *xxk
beta (1) 0.907942 0.00490421 185.1 0.0000 ol

Mean dependent var 0.000297 S.D. dependent var 0.009645

Log—-likelihood 58370.12 Akaike criterion -116730.2
Schwarz criterion -116691.5 Hannan—-Quinn -116717.5
Unconditional error variance = 0.000113276

Likelihood ratio test for (G)ARCH terms:

- Chi-square (2) = 6476.62 [0] —



GARCH(1,1) — some conclusions

Notice that AIC, BIC (Schwarz) and HQC metrics improve with respect
to all ARCH estimates (i.e. ARCH(1) to ARCH(4)).

The annualized expected return estimate is 252 x 0.000486=12.25%

We present the evolution of GARCH(1,1) conditional volatility of S&P
500 returns:




S&P 500 returns; expected return +/- conditional volatility
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#1 Extensions of ARCH and GARCH

Bollerslev (1987, Review of Economics and Statistics):
t-GARCH model.

The error term has the Student’s t-distribution.

The degrees of freedom parameter of the Student’s t-
distribution is jointly estimated with other parameters.

In this way the model is robust to extreme observations.




#1 Extensions of ARCH and GARCH

Ye = U + V¢ (expected return p, plus unexpected return v,)

Uy can be modeled as a constant parameter or it can also include
past values of y; or other explanatory variables.

Ve| (V1) oo Ye—1)~t(0, At V)
At =+ ayvi g+ Bihq
This is the t-GARCH(1, 1) model.

\/Atv/(v — 2) is the conditional standard deviation of unexpected
return, which is also named conditional volatility.
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#1 Extensions of ARCH and GARCH

Bollerslev (1987, Review of Economics and Statistics):
t-GARCH model.

In this model two parameters influence volatility:

(1) The time-varying A; (higher A; = higher volatility).

(2) The constant degrees of freedom parameter v (lower v 2>
higher volatility).

Changes in v control extreme risk!




t-GARCH(1,1) where u; = ¢

Model: GARCH(1l,1) [Bollerslev] (Student's t)*
Dependent variable: logreturn
Sample: 1950-01-04 -- 2017-12-29 (T = 17109), VCV method: Robust

Conditional mean equation
coefficient std. error z p-value

const 0.000573496 4.99622e-05 11.48 1.69e-030 *=*~*

Conditional variance equation

coefficient std. error z p-value
omega 6.37545e-07 1.06765e-07 9:971 2.35e-09 **x*
alpha 0.0771649 0.00608374 12.68 7.27e-037 **x*
beta 0.917896 0.00624018 147.1 0.0000 koK

Conditional density parameters

coefficient std. error z p-value

ni 6.56456 0.356946 18.39 1.55e=0]5 *%x*

Llik: 58861.80651 AIC: -117713.61302
BIC: -117674.87622 HQC: -117700.84306




t-GARCH(1,1) — some conclusions

Notice that model performance improves with respect to
GARCH(1,1), based on the AIC, BIC (Schwarz) and HQC metrics.

The degrees of freedom parameter estimate is 6.56.

N(O,1) is a special case of the Student’s t distribution for infinite
degrees of freedom. In practice, if the degrees of freedom is
higher than 30, then the two distributions coincide.

It is much lower than 30 for our degrees of freedom estimate
(hence, the improved model performance).
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#2a Extensions of ARCH and GARCH

Glosten, Jagannathan and Runkle (1993, Journal of Finance):
GARCH with leverage effects. For GARCH(1,1):

Ve = U + v (expected return p; plus unexpected return v, )
Vel (V1 o Ye—1)~N (0, A¢)
At = 0+ Vg + Bideoq + V11 (vemg < 0V,

where 1(+) is the indicator function (i.e. it takes the value 1 if
the argument is true). This model introduces asymmetry into A;.




#2b Extensions of ARCH and GARCH

t-GARCH with leverage effects. For GARCH(1,1):

Vi = U + V¢ (expected return y; plus unexpected return v;)
Ve| (V1) s Ye—1)~t(0, A, V)

At = 0+ aqvig + Biheoq +¥11(Weo1 < 0)vE4

where 1(-) is the indicator function (i.e. it takes the value 1 if
the argument is true).

This model also uses asymmetry in A;.



Model: GJR(1,1) [Glosten et al.] (Student's t)*
t-GARCH(lll) Dependent variable: logreturn
with leverage

Sample: 1950-01-04 —- 2017-12-29 (T = 17109), VCV method: Robust

effects Conditional mean equation
coefficient std. error zZ p—-value
const 0.000462197 4.95625e-05 9.326 1.10e-020 **x*
coefficient std. error z p-value
delta 8.08678e-07 1.27595e-07 6.338 2.33e-010 **%*
alpha 0.0261149 0.00379293 6.885 5.77e-012 **x*
gamma 0.0993859 0.00963896 10.31 6.29%9e-025 ***
beta 0.914697 0.00665306 137.5 0.0000 Kok
Conditional density parameters
coefficient std. error z p-value
ni 6.98157 0.411971 16.95 2.03e-064 *x*x*

Llik: 58979.90625 AIC: -117947.81250
BIC: -117901.32834 HQC: -117932.48855




t-GARCH(1,1) with leverage effects —
some conclusions

Notice that the model performance improves with respect to t-
GARCH(1,1), based on the AIC, BIC (Schwarz) and HQC metrics.

The leverage effects parameter is significantly different from
zero (hence, the improvement).

The leverage effects parameter is positive. This means that if we
have a negative unexpected return on the previous day, then the
risk of the portfolio increases. Explanation: If the value of the
equity falls, then the debt to equity ratio (i.e. leverage) of the
firm increases. Hence, the risk of the shareholders increases.
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#3 Extensions of ARCH and GARCH

Harvey, Ruiz and Shephard (1994, The Review of Economic Studies):
stochastic volatility model.

v = Uy + v =ty + exp(A) e, where e,.~N(0,02) i.i.d.
Ae = w + BiAr—1 + aqu; where u,~N(0,02) i.i.d.
This model is estimated by using the Kalman filter (Kalman 1960).

More recent stochastic volatility models include leverage effects, and
consider other distributions for the error term than the normal
distribution (more complicated, simulation-based estimation).
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Some conclusions from previous models

The previous extensions are effective, because they are robust
to extreme observations (i.e. Student’s t-distribution) and they
also incorporate the possibility of asymmetries in volatility.

Nevertheless, for ARCH and GARCH models, volatility is updated
by lags of the squared unexpected return, i.e. vZ 1, ..., V%.

This means that if in the previous period we have a large price
fall (e.g. a stock market crash), then volatility may be
overestimated for the days following the crash.

See the following estimate for GARCH(1,1):
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13rd October 1987 to 30th November 1987

Black Monday: 19th October 1987

0.15
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Conclusions from the figure

Clearly, the GARCH(1,1) model overestimates volatility for the
period after the stock market crash:

Volatility is average price change, but the figure shows that the
mean +/- volatility lines clearly bound the realized returns on
the S&P 500.

This is due to the property of GARCH that is uses squared
unexpected returns to update the variance equation.

Why not to use an alternative function to the square function?
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#4 Extensions of ARCH and GARCH

Harvey and Chakravarty (2008, University of Cambridge WP),
Beta-t-EGARCH model:

Ve = Up + U = Up + exp(Ap) e where gp~t(v) i.i.d.

At = w + B1Aq—1 + aus_1 (leverage effects can be included)

_ (vnyf
v exXp(2A¢)+vf

Compared to GARCH(1,1), the v?_, updating term is replaced by
Us_1, which is a nonlinear transformation of v7_;.




Comparison of updating terms for GARCH (red), and Beta-t-EGARCH

(blue) for nu=5, as a function of v_t
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Some conclusions on Beta-t-EGARCH

The updating term for Beta-t-EGARCH discounts extreme
observations when volatility is updated.

The degree of discounting is estimated for the data. It is directly
related to the degrees of freedom parameter. If the degrees of
freedom parameter goes to infinity then the u; converges to a
quadratic function of v, i.e. the GARCH-type update.
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Several studies show that Beta-t-EGARCH is superior to GARCH:

Blazsek and Villatoro (2015, Applied Economics)

Blazsek, Chavez and Mendez (2016, Applied Economics Letters)

Blazsek and Mendoza (2016, Applied Economics)

Blazsek and Monteros (2017a, Applied Economics)

Blazsek, Carrizo, Eskildsen and Gonzalez (2018, Finance Research Letters)
Blazsek and Hernandez (2018, Empirical Economics)

Blazsek and Licht (2018, Financial Statistical Journal)

Ayala and Blazsek (2018a and 2019, both in Applied Economics)
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Extensions of Beta-t-EGARCH

#1 Use other distributions for the error term (other than the
Student’s t-distribution):

Ayala and Blazsek (2018b Applied Economics; 2018c The
European Journal of Finance)

#2 Use Markov-switching (MS) dynamics for model parameters:
Blazsek and Ho (2017, Applied Economics): MS-Beta-t-EGARCH

Blazsek, Ho and Liu (2018, Applied Economics): MS-EGARCH for
Skew-Gen-t, NIG and EGB2 distributions.
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Extensions of Beta-t-EGARCH

#3 Use time-varying shape parameters in addition to the time-
varying scale parameters:

Blazsek and Monteros (2017b, Applied Economics): Beta-t-
EGARCH with time-varying degrees of freedom parameter.

Ayala, Blazsek and Escribano (2016, the present paper):

Skew-Gen-t-EGARCH, NIG-EGARCH and EGB2-EGARCH with
time-varying shape parameters.

AND ESCRIBANO (2019)



Beta-t-EGARCH with time-varying degrees of
freedom; Blazsek and Monteros (2017b)

Ve = Ue + Ve = Uy + exp(Ap) & Where g.~t(ve)

T (il i)

A =w+ PrAr—1 + auy 4

Ve =0 + pVeoq + KUy g U) ¢ o,
lexp(v;) + 3]e;
- |
exp(v¢) + 2+ &
_exp(ve) \y (0 _exp(vt)—i—3 exp(vt) \ys (0 _exp(vt)—b—Z exp(vt)
Uvt = —3 v BE ] 2 b4 B } ~ 2exp(v,)+4
exp(v; ) [exp(v;)+3]e? _exp(vy) 5 ]

2[exp(v;)+2] _£§+exp(vt)+2] 2 n [1 T eXP(Vtt)‘*'z}




Avala, Blazsek and Escribano (2019)
EGARCH with several dynamic shape parameters

Yr = Wt + v = e + exp( )€

Ht = C gbﬂt—l gup,t—l
At =w+ BA—1 + aur—1 + o sgn(—€r—1)(ur -1 + 1)

Pkt — Ok + VkPkt—1 T KkUp k t—1

The latter equation is for the k-th shape parameter of ¢;.




Avala, Blazsek and Escribano (2019)

Alternatives for the error term:

EGB2 (exponential generalized beta of the second kind):
2 shape parameters (skewness, tail thickness)

NIG (normal-inverse Gaussian):

2 shape parameters (skewness, tail thickness)

Skew-Gen-t (skewed generalized t):

3 shape parameters (skewness, peakedness, tail thickness)
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EGB2-DCS AIC  AIC rank BIC  BIC rank HQC HQC rank
Constant & and (¢ —6.9050 16 —6.9004 14 —6.9004 16
Dynamic & and (¢ —6.9072 9 —6.9009 Ll —6.9051 9
Dynamic & and constant (; —6.9060 12 —6.9005 L2 —6.9042 13
Constant & and dynamic (¢ —6.9055 15 —6.9000 16 —6.9037 15
NIG-DCS AIC  AIC rank BIC  BIC rank HQC HQC rank
Constant v+ and 7 —6.9059 13  —6.9013 10 —6.9044 12
Dynamic vt and n¢ —6.9068 10 —6.9005 13 —6.9047 11
Dynamic v+ and constant 7 —6.9068 11 —-6.9013 9 —6.9050 10
Constant v+ and dynamic 1t —6.9056 14 —6.9002 15 —6.9038 14
Skew-Gen-t-DCS AIC  AIC rank BIC  BIC rank HQC  HQC rank
Constant 7¢, vt and n¢ —6.9080 8 —6.9030 4 —6.9064 7
Dynamic 7¢, v+ and n¢ —6.9099 1 —6.9022 7 —6.9074 6
Dynamic 7¢, v+ and constant nt —6.9097 4 —-6.9029 6 —6.9075 5
Dynamic 7¢, constant v+ and dynamic n; —6.9099 2 —6.9031 ! —6.9076 2
Dynamic 7t and constant v¢, nt —6.9080 /4 —6.9021 8 —6.9061 8
Constant 7t and dynamic v¢, nt —6.9097 3 —6.9029 5 —6.9075 4
© Constant 7¢, dynamic 4 and constant ¢ ~ —6.9096 6 —6.9037 2 —6.9077 Y.
5 1 1

I Constant 7¢, v+ and dynamic 7 —6.9097 —6.9038 —6.9077 I



Time-varying parameter that drives the degrees of freedom
parameter for the Skew-Gen-t-EGARCH model.
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Thank you for your attention.




